EM算法总结

看了一天EM算法,做了ppt。总结一下。

第一篇教程很基础,可以看前部分,回忆一下概率论。

第二篇教程很理论,讲的很清楚,挺好看。

由于我做的事GMM所以我又结合了这篇教程

下面两篇是实现:

https://blog.csdn.net/abcjennifer/article/details/8198352

http://blog.pluskid.org/?p=39

如果自己用,或者想参考,可以看下。

最后总结EM算法的缺失数据,刚好对应了GMM聚类中的类,毕竟你不知道哪个向量属于哪一个高斯分量。所以他对于聚类算法是很有用的,这是他的有效性。但是由于会陷入局部最优,所以和初始化的时候的值关系很大,这是它的缺陷

简单总结如下:

https://wenku.baidu.com/view/f8d38db7d4bbfd0a79563c1ec5da50e2524dd1d8


阅读更多
版权声明:原创禁止转载 https://blog.csdn.net/u013249853/article/details/80350040
上一篇计算机视觉论文笔记五:Maximal Linear Embedding for Dimensionality Reduction
下一篇官方文档 numpy 数组 张量 声明 操作 极简笔记 必须知道的基础操作
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭