数据结构java语言描述第(一)篇---图的遍历

图的遍历,所谓遍历,即是对结点的访问。一般有两种访问策略:深度优先遍历,广度优先遍历。

一、深度优先遍历

1、主要思想

首先使用一个未走到过的顶点作为起始顶点,比如V0定点作为起始顶点,沿着V0定点的边访问其他未走到过的定点,首先发现V1(第一个邻接结点)还没有走到过,那么来到V1顶点,再以V1顶点作为起始顶点尝试访问其他未走到过的顶点,以此类推,当发现有一个定点不能访问到其他顶点了,需要回到上一次顶点,按照这个方法,最终遍历完整个图。显然深度优先遍历是沿着图的某一条分支遍历直到末端,然后回溯,再沿着另一条分支进行同样的访问。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。上图所访问的顺序是:V0–>V1–>V2–>V3–>V4–>V5–>V6–>V7–>V8

2、图的创建

通常图的存储需要用一个二维数组来存储。现在把上面的图创建出来。

public class Graph {

    /**
     * 两个顶点之间不可达
     */
    private static final int MAX_WEIGHT=10000;

    /**
     * 顶点数量
     */
    private int vertexSize;

    /**
     * 顶点数组
     */
    private int []vertexs;

    private int [][]matrix;

    /**
     * 标记一个定点是否访问过
     */
    private boolean []book;


    public void init(int vertexSize) {
        this.vertexSize = vertexSize;
        this.vertexs=new int[vertexSize];
        this.matrix=new int [vertexSize][vertexSize];
        this.book=new boolean[vertexSize];
        for(int i=0;i<vertexSize;i++){
            vertexs[i]=i;
        }
    }

    public static  Graph createGraph(int pVertexSize){
        Graph graph=new Graph();

        graph.init(pVertexSize);

        int [] a1 = new int[]{0,10,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,11,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT};
        int [] a2 = new int[]{10,0,18,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,16,MAX_WEIGHT,12};
        int [] a3 = new int[]{MAX_WEIGHT,MAX_WEIGHT,0,22,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,8};
        int [] a4 = new int[]{MAX_WEIGHT,MAX_WEIGHT,22,0,20,MAX_WEIGHT,MAX_WEIGHT,16,21};
        int [] a5 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,20,0,26,MAX_WEIGHT,7,MAX_WEIGHT};
        int [] a6 = new int[]{11,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,26,0,17,MAX_WEIGHT,MAX_WEIGHT};
        int [] a7 = new int[]{MAX_WEIGHT,16,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,17,0,19,MAX_WEIGHT};
        int [] a8 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,16,7,MAX_WEIGHT,19,0,MAX_WEIGHT};
        int [] a9 = new int[]{MAX_WEIGHT,12,8,21,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,0};

        graph.matrix[0] = a1;
        graph.matrix[1] = a2;
        graph.matrix[2] = a3;
        graph.matrix[3] = a4;
        graph.matrix[4] = a5;
        graph.matrix[5] = a6;
        graph.matrix[6] = a7;
        graph.matrix[7] = a8;
        graph.matrix[8] = a9;

        return graph;
    }
}
3、图的深度优先遍历

在真正遍历之前,要先写两个方法,用来获取某个顶点的第一个邻接点、根据前一个邻接点的下标来取得下一个邻接点

    /**
     * 获取某个顶点的第一个邻接点
     * @param pIndex
     * @return
     */
    public int getFirstNeighbor(int pIndex){
        //顶点pIndex到其他顶点时候可达
        for(int i=0;i<vertexSize;i++){
            if(matrix[pIndex][i]>0&&matrix[pIndex][i]<MAX_WEIGHT){
                return i;
            }
        }
        return -1;
    }
    /**
     * 根据前一个邻接点的下标来取得下一个邻接点
     * @param v 表示要找的顶点
     * @param index  表示该顶点相对于哪个邻接点去获取下一个邻接点
     * @return
     */
    public int getNextNeighbor(int v,int index){
        for (int i = index+1; i < vertexSize; i++) {
            if(matrix[v][i]>0&&matrix[v][i]<MAX_WEIGHT){
                return i;
            }   
        }
        return -1;
    }
    /**
     * 深度优先遍历算法
     * @param i
     */
    private void depthFirstSearch(int i){

        book[i]=true;

        int w = getFirstNeighbor(i);

        while(w!=-1){
            if(!book[w]){
                System.out.println("访问到了"+w+"定点");
                depthFirstSearch(w);
            }
            w=getNextNeighbor(i, w);
        }
    }


    /**
     * 对外公开的深度优先遍历
     */
    public void depthFirstSearch(){
        for (int i = 0; i <vertexSize; i++) {
           if(!book[i]){
              System.out.println("访问到了"+i+"顶点");
              depthFirstSearch(i);
           }    
        }   
    }
4、测试
public static void main(String[] args) {
        Graph graph=createGraph(9);
        graph.depthFirstSearch();
    }

打印结果:
访问到了0顶点
访问到了1定点
访问到了2定点
访问到了3定点
访问到了4定点
访问到了5定点
访问到了6定点
访问到了7定点
访问到了8定点

一、广度优先遍历

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

1、主要思想
  • 1、访问初始结点v并标记结点v为已访问。
  • 2、结点v入队列
  • 3、当队列非空时,继续执行,否则算法结束。
  • 4、出队列,取得队头结点u。
  • 5、查找结点u的第一个邻接结点w。
  • 6、若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
    1). 若结点w尚未被访问,则访问结点w并标记为已访问。
    2). 结点w入队列
    3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
2、图的广度优先遍历
    public void broadFirstSearch(){
        book = new boolean[vertexSize];
        for(int i =0;i<vertexSize;i++){
            if(!book[i]){
                broadFirstSearch(i);
            }
        }
    }

    /**
     * 实现广度优先遍历
     * @param i
     */
    private void broadFirstSearch(int i) {
        int u,w;
        LinkedList<Integer> queue = new LinkedList<Integer>();
        System.out.println("访问到:"+i+"顶点");
        book[i] = true;
        queue.add(i);//第一次把v0加到队列
        while(!queue.isEmpty()){
            u = (Integer)(queue.removeFirst()).intValue();
            w = getFirstNeighbor(u);
            while(w!=-1){
                if(!book[w]){
                    System.out.println("访问到了:"+w+"顶点");
                    book[w] = true;
                    queue.add(w);
                }
                w = getNextNeighbor(u, w);
            }
        }
    }
4、测试
public static void main(String[] args) {
        Graph graph=createGraph(9);
        graph.broadFirstSearch();
    }

打印结果:
访问到了:0顶点
访问到了:1顶点
访问到了:5顶点
访问到了:2顶点
访问到了:6顶点
访问到了:8顶点
访问到了:4顶点
访问到了:3顶点
访问到了:7顶点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值