离散数学实验三 · 最短路径计算

一、实验目的

通过本实验的学习理解Dijkstra算法,并且编码实现最短路径问题。

二、实验内容

Dijkstra算法的理解;

算法概念:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,之后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法结束。),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

三、Python代码部分

import numpy as np

MAX = float('inf')

#输入邻接矩阵
node=eval(input("请输入图像的节点数量:"))
matrix = []
for i in range(0, node):
    temp = []
    temp=input("请输入图像邻接矩阵的第"+str(i+1)+"行(若节点之间没有连接请输入“inf”):").split()
    matrix.append(temp)

#将矩阵的属性转换为整数
matrix_ = np.array(matrix)
matrix_ = matrix_.astype(np.float)

def Dijkstra(matrix, start_node):
    matrix_length = len(matrix_)  # 矩阵一维数组的长度
    access_node = [False] * matrix_length  # 访问过的节点数组
    Excellent = [MAX] * matrix_length  # 最短路径距离数组
    Excellent[start_node] = 0  # 将起始节点的最短路径修改成0

    # 将访问节点中未访问的个数作为循环值
    while access_node.count(False):
        min_value = MAX #节点的暂时最小路径
        min_value_index = -1

        # 获取未循环的最小值下标
        for index in range(matrix_length):
            if not access_node[index] and Excellent[index] < min_value: #如果没有访问过这个节点并且这个节点的最佳路径小于暂时最小路径
                min_value = Excellent[index]    #录入目前路径
                min_value_index = index

        # 将访问节点数组对应的值修改成True
        access_node[min_value_index] = True

        # 更新最短路径距离数组。
        for index in range(matrix_length):
            Excellent[index] = min(Excellent[index], (Excellent[min_value_index] + matrix_[min_value_index][index]))

    return Excellent

ret = Dijkstra(matrix, 0)
ret_ = np.array(ret,dtype=np.int)
for i in range(len(ret)):
    print("从节点0到节点",i,"的最佳路径距离为:",ret_[i])

四、运行结果演示

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值