python 最大归一化

本文介绍了最大绝对值归一化方法,即MaxAbsNormalization,它将所有数据缩放到[-1,1]范围内。通过计算数据列表或字典中值的绝对值最大值,然后除以这个最大值实现标准化。示例代码展示了如何对列表和字典进行这种归一化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大归一化是将数据转化到[-1,1]范围之间。公式如下

其中|X|max为x特征的绝对值的最大值。

数据标准化算法介绍—数据建模工具_预处理_Max_字段

"""
最大绝对值归一化(max abs normalization ):也就是将数值变为单位长度(scaling to unit length),将数值范围缩放到 [-1, 1] 区间里
把所有数据归一化到[-1,1]区间内
param data: 数据列表,数据取值范围:全体实数
"""
def max_abs_normalization_for_list (data):

    abs_min_value = abs(min(data))
    abs_max_value = abs(max(data))
    max_value = max(abs_min_value, abs_max_value)
    new_list = []
    for i in data:
        new_list.append(i / max_value)
    return new_list


def max_abs_normalization_for_dict (data = {}):

    abs_min_value = abs(min(data.values()))
    abs_max_value = abs(max(data.values()))
    max_value = max(abs_min_value, abs_max_value)
    new_dict = {}
    for key,value in data.items():
        new_dict[key] = value / max_value
    return new_dict

if __name__ == '__main__':
    d = [-4, -2, 0, 1, 2]
    print(max_abs_normalization_for_list(d))

    d = {'a':-4, 'b':-2, 'c':0, 'd':1, 'e':8}
    print(max_abs_normalization_for_dict(d))

 

没有懂有些地方为啥公式要写为

 

”最大绝对值归一化“可能和”最大值归一化“不是一个东西?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件工程小施同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值