javascript实现排序算法

引言


  排序算法是数据结构和算法之中的基本功,无论是在笔试还是面试,还是实际运用中都有着很基础的地位。这不正直七月,每年校招的备战期,所以想把常见的排序算法记录下来。在本篇文章中的排序算法使用 JavaScript 实现。

 一、 冒泡排序


  冒泡排序是排序算法中最简单的一个算法,其优点是易理解,易实现。在一些对性能要求不高且数据量不大的需求中,冒泡排序是一个很好的选择。

  原理:假设排序顺序为增序,数组长度为 N。数组每相邻两个元素进行比较,大数后移,小数前移,第一轮排序下来就能找到最大的数。也就是比较 A[i] 和 A[i+1] ,将大数后移,随后增加 i 的值,再进行比较。第二轮再对剩余的 N-1 个数进行排序,找出第二大的数,以此类推。同时也可以记录交换次数来进行优化,如果在一层循环之中交换次数为 0,则排序结束。

  下面这张图展示了冒泡排序的全过程:


  下面这张图展示冒泡排序在宏观层面的全过程:

  

平均时间复杂度  

 最优时间负复杂度

最坏时间复杂度

空间复杂度  

O(n^2) 

O(n)

O(n^2)

 O(1)  

  

  

function bubbleSort (arr) {

    var swapTime = 0;

    for(var i = 0, length1 = arr.length; i < length1; i ++){

        for(var j = 0, length2 = length1 - i; j < length2 - 1; j ++){

            if(arr[j] > arr[j+1]){

                swapTime++;

                var temp = arr[j];

                arr[j] = arr[j+1];

                arr[j+1] = temp;

            }

        }

        //检查交换次数,如果为0,则当前数组为有序数组;如不为0,则重置

        if(swapTime === 0){

            break;

        }else {

            swapTime = 0;

        }

    }

}


 二、选择排序

  选择排序算法与冒泡排序算法类似,即每一轮找出一个最大值。但和冒泡排序不同的一点是,冒泡排序是采用不停的交换将最大值(最小值)筛选出来,而选择排序是记录下最大值(最小值)的索引。

  原理:假设排序方式为增序,数组长度为 N。设置最大值索引初始值 index = 0,然后遍历数组,记录下最大值的索引,即比较 A[i] 与 A[index] 的值,若 A[i] > A[index] 则更新 index = i。在每一轮遍历结束后,交换 index 位置和末尾位置的值,即交换 A[index] 和 A[i],这样便保证了末尾值是最大值。随后对剩余的 N-1 个数进行同样的方式排序,以此类推。  

  下面这张图展示了选择排序的全过程:


  下面这张图展示了在宏观层面上选择排序的全过程:

平均时间复杂度 

最优时间复杂度

最差时间复杂度

空间复杂度

O(n^2) 

O(n^2)

  O(n^2)

O(1)



   

function selectSort (arr) {

    for(var i = 0, length1 = arr.length; i < length1; i ++){

        var index = 0

        for(var j = 0, length2 = length1 - i; j < length2; j ++){

            if(arr[j] > arr[index]){

                index = j;

            }

        }

        var temp = arr[index];

        arr[index] = arr[length1 - i - 1];

        arr[length1 - i - 1] = temp;

    }

}


三、插入排序

  插入排序的思想是将原始数组划分成两侧,一侧是有序数组,一侧是无序数组。每次取出无序数组的一个元素,将它插入到有序数组的正确位置上,这种方式也会导致有序数组中其插入位置之后的元素全部后移。插入排序的思想类似于我们抓扑克牌。

  原理:假设排序方式为增序,数组长度为 N。初始设 A[0] 为有序数组,A[1] ~ A[N-1] 为无序数组,取出 A[1] 将其插入至有序数组中的正确位置,使得有序数组增大为 A[0] ~ A[1]。继续取 A[2] 将其插入至有序表数组的正确位置,以此类推,直至无序数组取完。

  下面这张图展示了插入排序的全过程:

  下面这张图展示了在宏观层面上插入排序的全过程:


平均时间复杂度 

最优时间复杂度

最差时间复杂度

空间复杂度

O(n^2) 

  O(n^2)

  O(n^2)

O(1)


function insertSort (arr) {

    for(var i = 0, length1 = arr.length; i < length1; i ++){

        for(var j = 0, length2 = i + 1; j < length2; j ++){

            if(arr[j] > arr[length2]){

                var temp = arr[length2];

                for(var k = length2; k > j; k --){

                    arr[k] = arr[k-1];

                }

                arr[j] = temp;

            }

        }

    }

}


 四、 希尔排序

   希尔排序是优化过后的插入,其算法的思想是在插入排序的基础上加上了一个步长 gap,通过步长将数组分成若干个子项,先分别对子项进行插入排序,使得每一个元素朝着最终目的地跨了一大步。然后逐步缩小步长,这种排序算法也是不稳定的。

  原理:假设排序方式为增序,数组长度为 N。首先取步长 gap = N/2,那么便将 N 长度的数组拆分成了 [A[0], A[gap]],[A[1], A[gap+1]],[A[2], A[gap+3]] ... ... [A[gap-1], A[N-1]] 子数组,分别对子数组进行插入排序。随后逐步缩小步长,再进行插入排序,直至步长为 1。

  下面这张图展示了希尔排序的全过程:

  下面这张图展示了希尔排序在宏观上的全过程:

平均时间复杂度 

最优时间复杂度

最差时间复杂度

空间复杂度

O(nLogn)~O(n^2)

O(n^1.3)

O(n^2)

O(1)

   

function shellSort(arr) {

    var gap = Math.floor(arr.length / 2);

    while (gap >= 1) {

        for (var i = 0; i < gap; i++) {

            for (var j = i; j < arr.length; j += gap) {

                for (var k = i, length = j + gap; k < length; k += gap) {

                    if (arr[k] > arr[length]) {

                        var temp = arr[length];

                        for (var x = length; x > k; x = x - gap) {

                            arr[x] = arr[x - gap];

                        }

                        arr[k] = temp;

                    }

                }

            }

        }

        gap = Math.floor(gap / 2);

    }

}



五、归并排序  

 

  归并排序是分治法思想的典型应用,我们可以把一个 N 规模的问题分解成若干个小规模的子问题,用子问题的解来求解原问题。这同时也涉及到了问题的求解顺序,在动态规划算法中有自顶向下和自底向上两种不同的求解顺序。在这里一般采用的是自底向上的求解方法,比如一个 N 长度的数组,我们可以分解成 N/2 个长度为 2 或 1 的子数组,分别对子数组排序,再进行两两相并,直到归并成原始数组。

  原理:假设排序顺序为增序,数组长度为 N。将数组拆分成 N 个长度为 1 的数组。然后相邻子数组进行归并,形成若干个长度为 2 或者 1 的数组,再继续进行归并,直至长度为 N。 

  下面这张图展示了归并的排序的全过程: 

 

  下面这张图展示了在宏观层面上归并排序的全过程:

平均时间复杂度

最优时间复杂度

最差时间复杂度

空间复杂度

O(nLogn)

O(nLogn)

O(nLogn)

O(n)

 

function mergeSort(arr) {

    var n = 1;

    while (n < arr.length) {

        for (var i = 0; i < arr.length; i += n*2) {

            var arr1 = arr.slice(i, i+n);

            var arr2 = arr.slice(i+n, i+(n*2));

            var temp = [];

            while(arr1.length != 0 || arr2.length != 0){

                if(arr1.length === 0){

                    temp.push(arr2.shift());

                    continue;

                }

                if(arr2.length === 0){

                    temp.push(arr1.shift());

                    continue;

                }

                if(arr1[0] < arr2[0]){

                    temp.push(arr1.shift());

                }else{

                    temp.push(arr2.shift());

                }

            }

            arr.splice(i, n*2, ...temp);

        }

        n = n * 2;

    }

}


 六、快速排序

  快速排序同样也使用了分治法的思想,在实际运用中使用的最多的就是快速排序。快速排序的核心思想是运用递归法,在每轮排序时指定一个基数,将基数移动到正确的位置上,然后再把基数的左右两边拆分出来,并分别进行相同的排序处理,直到其子数组长度为 1。其采用的是自顶向下的处理法。

  原理:在每一轮排序中取一个基数 k , 设 i 和 j 分别为数组的最左端和最右端,i 坐标从起始点向 k 点遍历,若找到一个比 k 大的元素,则停下来等待 j 的遍历。 j 坐标从起始点向 k 点遍历,若找到一个比 k 小的元素,则 i 和 j 坐标的元素互相交换。若有一端提前到达了 k 点,则等待满足条件后与另一端坐标交换。当 i 和 j 碰撞时,则为分治点,此时 i 和 j 相碰撞的坐标元素便是它的最终位置,以碰撞点为中心将数组拆分成两段,并进行相同的递归处理。当 i >= j 时,则为回退点。

  下面给出一张维基百科上的图,展示了一轮快速排序的过程:

 

  下面这张图展示了一段快速排序的全过程:

  

平均时间复杂度    

        


最优时间复杂度

最差时间复杂度

空间复杂度

O(nLogn)

O(nLogn)

O(n^2)

O(1)

function quickSort (arr) {

    function sort(array, first, last) {

        if (first >= last) {

            return;

        }

        var base = Math.floor((first + last) / 2);

        var i = first - 1;

        var j = last - 1;

        var temp;

        while (j > i) {

            while (j > i && array[j] > array[base]) {

                j--;

            }

            while (i < j && array[i] <= array[base]) {

                i++;

            }

            temp = array[i];

            array[i] = array[j];

            array[j] = temp;

        }

        temp = array[base];

        array[base] = array[i];

        array[i] = temp;

        sort(array, first, i);

        sort(array, i + 2, last)

    }

    sort(arr, 1, arr.length);

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值