超定方程
Ax=b A的维数m*n m>n rank(A)=n
此时方程组的个数>未知数的个数 一般情况下不存在解
因为给定的条件过于苛刻,过于严格,导致解不存在。比如给定三点不在一条直线上此时没有办法确定一条直线
解此类方程 通常求近似解 采用最小二乘法
欠定方程组
Ax=b A的维数m*n m<n rank(A)=m
此时方程组的个数<未知数的个数 一般情况下存在无穷多解
采用内点法或者梯度投影法
QR分解
A的维数mn m>=n 存在列正交矩阵Q(mm)和上三角矩阵R*(m*n)使得A=QR
可以进一步分解 此时Q1对应n维R Q2对应0空间