R语言kmeans实例

说明:根据table(iris$Species, kmeans$cluster);可以看出setosa花成功聚为1类(图中绿o),但是versicolor花和virginica有16个分错交叉,但主体部分还是分的较明显的

> df<-iris[,c(1:4)]
> set.seed(252964) # 设置随机值,为了得到一致结果

> (kmeans <- kmeans(na.omit(df), 3))

> table(iris$Species, kmeans$cluster);   #查看分类概括 
   
              1  2  3
  setosa      0  0 50
  versicolor  2 48  0
  virginica  36 14  0

> plot(df[c("Sepal.Length", "Sepal.Width")], col = kmeans$cluster, pch = as.integer(iris$Species))  #不同的颜色代表不同的聚类结果,不同的形状代表训练数据集的原始分类情况。  

> points(kmeans$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3, pch = 8, cex=2)

图注:颜色是实际聚类效果,形状是原始数据真实分类(共分错16个);


参考: https://blog.csdn.net/yucan1001/article/details/23123043

https://blog.csdn.net/huyongfeijoe/article/details/51136733


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值