- 博客(227)
- 收藏
- 关注
原创 【五年磨一剑】纯代码复现nature/cell大型网络图并标注模块基因
本文介绍了一种基于WGCNA分析结果的网络可视化方法,整合了igraph和R代码实现。该方法通过自定义函数ks_large_network()实现网络布局优化,可适用于基因互作、hdWGCNA等多种分析结果的可视化。核心创新点在于:1)突破igraph默认布局限制,实现类似Cell和Nature Medicine期刊的优质网络展示效果;2)提供完整的代码流程,从网络构建到坐标提取,支持在ggplot2中进行后续灵活的可视化定制;3)支持模块通路标注和基因分类展示等功能,无需依赖PS/AI等图形软件。该方法为
2025-09-07 20:09:40
283
原创 【1:1复刻R版】python版火山图函数一键出图
作图使用的是matplotlib结合seaborn,它两的组合我愿称之为python界的ggplot2!完整函数已发布微信VIP群!首先看看函数参数:我们需要提供的数据是一个dataframe,包含差异基因,logFC,pval的数据框。)的发布,有小伙伴希望增加python的可视化,但是其实很多我们R中已经实现过了,选择用最简单的方式完成就可以了。本着教程都对标了,可视化也尽可能尽力对标,所以先从差异基因火山图可视化开始,这里1:1复刻的是之前R中的内容(同样的实现散点图以及基因标注。
2025-08-18 12:51:30
315
原创 单细胞转录组代谢相关分析KS合集
【摘要】本文介绍KS科研分享与服务提供的VIP合集与终生订阅服务,提醒用户设置公众号星标以获取最新内容。重点推荐单细胞代谢推断分析相关教程资源,包括Compass、scFEA、MEBOCOST等工具的使用方法,已购用户可免费获取更新教程。提供代谢通路活性分析、代谢通讯分析等专业内容,满足科研人员的单细胞转录组分析需求。(149字)
2025-08-18 12:18:00
258
原创 【1:1复刻Cell】python版单细胞多组差异基因火山图可视化函数
本文介绍了一个Python函数,用于复刻R语言中的多组差异基因火山图可视化。该函数封装了matplotlib和seaborn库,只需提供包含差异基因、logFC和p值的数据框即可自动生成火山图。文章演示了如何从Seurat或Scanpy获取差异分析结果,并展示了函数的两种使用方式:默认不标注基因和标注特定基因(如上调和下调最显著的基因)。该函数100%还原了R版功能,方便用户快速实现多组差异基因的可视化分析。完整函数代码已发布在微信VIP群中。
2025-08-18 12:14:54
469
原创 Palantir—单细胞转录组拟时分析工具
本文介绍了基于Python的单细胞拟时分析工具Palantir,该工具可沿分化轨迹对齐细胞并支持指定起点和终点。文章演示了Palantir(1.4.1版本)的安装使用方法,包括数据加载、扩散映射计算、伪时间推断和分支概率估计等核心功能。通过实例展示了在UMAP上可视化细胞轨迹、分析基因表达趋势(如GPX2、CD9等基因)的操作流程。该工具适用于单细胞转录组数据,可与Scanpy等工具配合使用,完整代码已发布在微信VIP群和GitHub(https://github.com/dpeerlab/Palantir
2025-08-11 08:51:10
321
原创 【奇技淫巧】:单细胞monocle2结果添加类似RNA velocity 的箭头指示拟时方向
本文介绍了一种在monocle2拟时分析结果上添加箭头的方法,通过借用metR包实现。虽然箭头本身没有实际分析意义,但可以直观指示细胞分化方向。文章详细展示了R代码实现过程:首先完成monocle2标准分析流程,提取坐标信息后,利用ggplot2结合metR包的geom_arrow函数,在不同细胞状态区域添加箭头。最后还演示了结合细胞类型标记的可视化效果,并提供了完整的代码示例和主题修饰方法。这种方法适用于无RNA速率数据时,对单细胞拟时分析结果进行可视化增强。
2025-08-11 08:51:02
191
原创 【视频-python一键函数】:热图标注特定基因及不同颜色设置展示marker基因
本文针对scanpy热图函数无法标注特定基因的问题,开发了一个通用可视化函数。该函数接受DataFrame输入,可展示单细胞marker基因平均表达量热图及其他数据矩阵,并支持自定义基因标注和颜色设置。文章提供了函数参数说明、示例代码(包括数据预处理和颜色字典配置)以及两种热图实现方式:基于平均表达矩阵的热图和展示所有细胞的marker基因热图。后者参考了Nature Communications文章的方法,通过yticks_fancy函数实现关键基因标注。全文配有视频演示链接和详细代码示例,解决了原始sc
2025-08-11 08:50:56
397
原创 Cellbender去除单细胞转录组环境污染/背景RNA
本文介绍了单细胞转录组分析中去除环境污染RNA的Python工具CellBender。CellBender能从原始计数矩阵中去除环境RNA和随机条形码交换导致的噪声,适用于scRNA-seq、snRNA-seq和CITE-seq数据。文章详细说明了安装方法、基本命令参数(如输入输出文件、GPU加速、训练次数等)及运行流程。通过示例展示如何将10X数据转换为h5格式后运行CellBender,并解释输出结果(重点关注report.html和去噪后的h5文件)。该工具作为数据预处理步骤,能有效改善细胞分群不清晰
2025-08-11 08:50:48
814
原创 python版单细胞转录组基因集评分及可视化
Scanpy单细胞转录组分析系列教程涵盖了从数据读取到多样本整合的全流程分析,重点介绍了基因集评分功能scanpy.tl.score_genes的使用方法。该系列包括:基础数据操作(1-4讲)、可视化技巧(5讲)、百万级细胞处理和大样本整合(6讲)。最新内容演示了如何对特定基因集(如炎症相关基因)进行评分,并通过分面UMAP图和小提琴图展示不同组间评分差异,辅以t检验统计显著性标记。文章强调Scanpy与Seurat的互补性,建议根据熟悉程度选择Python或R进行后续分析。代码示例详细展示了从基因评分到可
2025-08-11 08:50:41
311
原创 单细胞降维图修饰之celltype添加虚线轮廓:omicverse包
本文介绍了如何在Python中使用omicverse包为单细胞转录组数据添加细胞类型轮廓线。首先需要单独创建Python环境安装omicverse以避免依赖冲突。通过ov.pl.embedding绘制UMAP图后,使用ov.pl.contour函数可为指定细胞类型添加轮廓线,通过调整contour_threshold参数控制轮廓清晰度。文章还展示了在基因表达UMAP图上标记特定细胞类型marker基因并添加轮廓线的方法,通过循环实现多组marker基因的可视化。这些功能有效增强了单细胞数据的可视化效果,使细
2025-08-11 08:49:40
179
原创 scanpy单细胞转录组python教程(六):多样本数据整合分析之scvi-tool
本教程详细演示了使用scanpy和scvi-tools进行多样本单细胞转录组数据整合分析的全流程。从数据加载、质控过滤(基因数、线粒体基因比例等)、标准化处理,到使用scVI模型进行批次效应校正和降维聚类,最终完成细胞类型注释。教程特别强调了数据质控指标的设定和scVI整合方法的应用,并提供了完整的Python代码实现。通过分析GSE250130数据集,展示了从原始数据到最终细胞分群的完整分析路径,包括特征选择、细胞周期评分、可视化等重要环节,为处理大规模单细胞数据提供了实用参考方案。
2025-08-11 08:49:29
549
原创 scanpy单细胞转录组python教程(五):最详尽的基础可视化解析
【摘要】该系列教程详细介绍了使用Python的scanpy库进行单细胞转录组数据分析的全流程,包括数据读取、质控、标准化、降维聚类、细胞注释和可视化。教程提供了丰富的代码示例和参数解释,涵盖气泡图、小提琴图等多样化的可视化方法,并支持将Seurat对象转换为h5ad格式进行可视化。作者表示因内容详实且耗时较多,教程为付费资源,购买后可获取完整的scanpy单样本分析流程文档。该系列适合希望掌握Python单细胞分析替代方案的研究人员。
2025-08-10 12:49:01
271
原创 scanpy单细胞转录组python教程(四):单样本数据分析之降维聚类及细胞注释
本文介绍了使用scanpy进行单细胞转录组分析的降维聚类和细胞注释流程。首先通过PCA降维并可视化主成分贡献,然后使用不同分辨率参数(0.2-1.0)进行Leiden聚类。通过Wilcoxon检验鉴定marker基因,并基于经典marker基因手动注释细胞类型。最后对低质量细胞群进行过滤,并重新计算邻居图和UMAP可视化。流程中包含PCA方差分析、多分辨率聚类比较、marker基因筛选和基于UMAP的细胞类型可视化等关键步骤,为后续分析奠定基础。
2025-08-10 12:47:23
435
原创 scanpy单细胞转录组python教程(三):单样本数据分析之数据标准化、特征选择、细胞周期计算、回归等
本文介绍了使用scanpy进行单细胞转录组数据分析的标准化流程,包括数据归一化、特征选择、细胞周期评分和协变量回归等关键步骤。首先对原始计数矩阵进行中位数标准化和log1p转换,并保存不同处理阶段的矩阵。随后通过高变基因筛选减少数据维度,展示了细胞周期评分计算的可选步骤,并演示了如何回归去除技术噪声因素的影响(如测序深度、线粒体基因比例等)。这些预处理步骤为后续的降维聚类和细胞注释分析奠定了基础,文中还指出部分操作可根据实际数据情况选择性执行。流程设计思路与Seurat分析工具类似,便于有相关经验的用户理解
2025-08-10 12:42:06
674
原创 scanpy单细胞转录组python教程(二):单样本数据分析之数据质控
摘要:本文介绍了使用scanpy进行单细胞转录组数据质控的流程。主要内容包括:1)数据读取(10X数据格式);2)基础过滤(每个细胞至少表达200个基因,每个基因在至少3个细胞中表达);3)计算关键质控指标(线粒体基因、核糖体基因和血红蛋白基因的表达比例);4)可视化展示质控指标分布;5)根据实际数据情况设定过滤阈值(如线粒体基因比例<20%,总UMI数在1000-20000之间等)。文章强调质控是主观性较强的步骤,需结合具体数据进行调整,并建议在分群后可能需要重新优化质控参数。该流程适用于单个样本分
2025-08-10 12:39:45
508
原创 scanpy单细胞转录组python教程(一):不同形式数据读取
单细胞分析正从R语言向Python扩展,scanpy成为处理大规模数据的必备工具。相比R的Seurat,scanpy基于Python的anndata数据结构,能高效处理百万级细胞数据集。本文介绍了scanpy的安装方法,演示了多种数据格式(10X mtx/h5、csv、loom、h5ad)的读取方式,并强调了R与Python在可视化与计算效率上的互补性。通过建立专用环境,用户可灵活运用scanpy完成从数据预处理到降维聚类的完整分析流程,为后续个性化研究奠定基础。该工具尤其适合处理海量单细胞数据,解决了Se
2025-08-10 12:24:43
886
原创 milo-基于KNN的差异丰度分析(python版miloR)
本文介绍了使用Python版单细胞差异丰度分析工具pertpy(原milopy)的完整流程。pertpy整合了miloR的功能,支持直接处理Python流程的单细胞数据。安装后通过scanpy读取h5ad数据,构建Milo对象并进行KNN图构建和邻域分析。关键步骤包括:计算邻域细胞数量、可视化差异丰度结果(支持自定义参数)、标注细胞类型以及处理混合细胞类型区域。该方法通过比较不同实验条件下细胞数量的变化来检测差异丰度,最终可生成直观的蜜蜂群图展示结果。相较于R版miloR,pertpy保持了相似的分析逻辑,
2025-08-10 12:12:31
401
原创 MEBOCOST单细胞转录组代谢通讯分析
MEBOCOST是一个基于Python的计算工具,利用单细胞RNA测序(scRNA-seq)数据预测细胞间基于代谢物的通讯。该工具通过整合代谢物-传感器数据库,识别发送细胞(分泌代谢物)与接收细胞(表达传感器蛋白)之间的通讯事件。分析流程包括数据预处理、通讯推断、结果过滤和可视化。MEBOCOST提供多种可视化方式(柱状图、网络图、点图等)展示细胞间通讯模式,并支持整合COMPASS代谢流分析结果进行验证。该工具已应用于Nature Communications等研究,适用于探索代谢微环境中的细胞互作机制。
2025-08-10 12:07:26
423
原创 【视频教程】cNMF(Consensus NMF):基于python的单细胞转录组数据非负矩阵分解分析
本文介绍了cNMF(ConsensusNMF)这一高效的Python工具在单细胞RNA测序数据分析中的应用。相比R语言NMF分析耗时长的缺点,cNMF基于Python实现,运行速度更快,能快速从单细胞数据中推断基因表达程序。文章详细演示了cNMF的安装步骤(需创建独立conda环境)和完整分析流程,包括数据准备、矩阵分解、合并结果、选择最佳K值和获取共识解等5个关键步骤,并展示了如何将结果与scanpy对象整合进行可视化。cNMF输出包含基因表达程序矩阵和细胞使用矩阵,为单细胞数据分析提供了更高效的解决方案
2025-08-10 12:01:11
954
原创 你有这么大的样本吗?---学习张泽民院士Cell文章分析思路之单细胞丰度NMF分析
摘要:两篇研究分别采用无监督层次聚类和NMF方法,基于单细胞数据中免疫细胞亚型比例对肿瘤微环境(TIME)进行分类。Cancercell文章通过细胞相对丰度聚类识别5种生态类型;Cell文章则利用NMF分解细胞比例矩阵,将222例患者分为5种TIME亚型,每种亚型对应特定免疫细胞模块。研究显示肿瘤免疫微环境存在显著异质性,且NMF方法能有效捕获这种异质性。关键要素包括:足够样本量、精确的亚群注释和比例矩阵标准化处理。两种方法为肿瘤免疫分型提供了新思路。
2025-08-10 11:59:52
743
原创 ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
同时我们也演示另外一组数据,关于批次效应的数据演示这是一个大型数据集,合并了多个数据库不同来源的同一组织的单细胞数据,这里使用ROGUE验证一下。ROGUE越高,越接近1,表明细胞群越纯,反之表示细胞群异质性比较高,这个群体还可再细分,这样我们可以分离得到一些亚群。ROGUE calculation,这个是针对整个Epi细胞群体的计算,得到的最终值是0.3很低,说明Epi群体异质性很大,这个是符合的,且不说Epi可以分亚群,我们这个演示数据的Epi包含的还是正常人和肿瘤病人的Epi,那自然异质性更大了。
2025-08-10 11:57:57
572
原创 【略微升级】复现cancer cell:cellchat及cellphonedb细胞互作结果可视化函数
这也是我们函数略微升级的原因,小伙伴说这个图没有表示互作强度,其实我们也考虑过,但是不同线条粗细展示强度只会让图更乱,还不如现在这样的小清新。所以我们想到了一种折中的办法,展示互作也并不是所有都是重点,往往研究的也就是那么几个,所以可以将重点的互作显目标记,不就ok了?),先说一下那个关子,我本来准备卖个关子,结果把自己卖了,忘记说了。这个图应该很熟悉是因为我们介绍过一个包,关于cellphonedb的ktplots包,针对cpdb结果的R可视化:其中功能也有一个互作网络图是这样的:是不是特别像呢?
2025-08-10 11:56:04
384
原创 复现cancer cell图表:【函数】Edge bunding可视化cellchat及cellphonedb细胞互作结果
本文介绍了一种用于细胞互作可视化的Edgebundling图方法,复现了CancerCell中的图表展示方式。作者对原始代码进行了简化和封装,开发了适用于CellChat和CellPhoneDB分析结果的简易函数ks_CC_bdPlot和ks_cpdb_bdPlot。这些函数支持自定义源细胞和目标细胞类型、设定互作强度阈值,并能通过不同形状和颜色区分配体受体及细胞类型。文章提供了具体的使用示例和参数说明,相关代码和教程可在GitHub和B站获取。该工具简化了复杂的互作可视化流程,为细胞通讯研究提供了便捷的分
2025-08-10 11:54:57
276
原创 玩转单细胞(21):复现Nature图表---单细胞亚群无监督层次聚类分析及环形树状图绘制
这里我们要学习和复现的是一篇nature文章的图表Fig 1d,这篇文章全部数据都来自公共数据库。文章提供了处理好的单细胞数据以及代码,很好的学习资源。计算平均表达量矩阵:这里是anndata,在python中计算好之后使用R分析作图。如果您的单细胞数据是seurat,那么使用Averageexpress函数计算平均表达量矩阵。),之前使用的是ggplot2,如果类似这篇文章这样,celltype很多,可以考虑环形的聚类树图。添加颜色:原文是有设置好的颜色文件,没有找到,可以按照自己需求设置。
2025-08-10 11:47:03
337
原创 奇技淫巧】:单细胞monocle2结果添加类似RNA velocity 的箭头指示拟时方向
是一篇修饰作图的内容,算是“奇技淫巧”,有一定的用处。小伙伴的脑洞和需求真的是无奇不有,是这样的,小伙伴没有跑速率(如果有了RNA 速率结果,这个修饰也不需要了),想使用类似于RNA速率的箭头指示自己monocle2的结果,也就是在monocle2拟时结果上加箭头。思路也简单,就是加箭头,指示方向就可以了(箭头没有任何意义)。这个包的初衷是供大气科学研究人员使用,这里我们借用借用。首先我们跑一个monocle2流程结果:参考(自己数据按照流程跑就可以了。这样就完成了,满足了我的虚荣心!
2025-08-10 11:44:31
295
原创 单细胞marker基因表达密度图-(还有一个包装函数)
我们借助Nebulosa,将上面的过程包装为一个函数,还是那句话,受累麻烦的事我们来解决,您轻松即可,先看看函数参数:需要注意的是,如果你只想框选某一类celltype,理想模式是这群celltype是单独聚类的,没有散落在其他类群,否则将会全部框选,效果不好,建议使用AI/PS添加。需要注意,这里我算是投机取巧了,用了一个和这个作图毫无关系的包ggnetwork,主要的目的是用他的theme_blank()主题,一次性将所有清空,当然也可以自己慢慢写,不过有现成的,为啥不用呢?这质感不就上去了嘛。
2025-05-04 21:15:44
475
原创 (视频教程)Compass代谢分析详细流程及python版-R语言版下游分析和可视化
不想做太多的前情解说了,有点累了,做了很久的内容,包括整个分析,从软件安装和报错解决到后期下游python版-R语言版下游分析和可视化!单细胞代谢分析我们写过很多了,唯独少了最“高级”的compass,有很多小伙伴需要,终于出了!Compass是一篇cell文章提出的方法,单细胞、bulk中都可以进行分析。4、有些小伙伴不会用python或者不习惯,所以出了R版的下游分析及可视化。2、分析流程测试,包括正常的分析和micropooling的测试。3、python版下游分析及可视化。
2025-05-04 21:14:32
251
原创 【一键函数】单细胞marker基因平均表达量热图函数
这是一个集成的函数,很多小伙伴被一些美图”迷了眼“,需要这样、那样的形式。单独做又很麻烦,且容易出错。要求既要这样展示,又要那样展示。所以我们直接做了一个集成的函数,完成一些美丽的可视化,尽力满足需求。这里要展示的单细胞marker基因平均表达量热图,按理来说有很多教程,可是有些小伙伴在热图注释、顺序调整、热图美化上面晕头转向,所以我们熬点夜解决这个问题。[图片上传中...(image-96eed5-1734509619995)]
2025-05-04 21:13:03
341
原创 复现SCI图表:适用于cellchat v2和cpdb v5的细胞互作受配体分组气泡图
图是关于互作分析受配体的展示。横轴是source cell,纵轴是受配体对,展示了每个source与其他细胞的互作,也展示了每个组之间结果。其实看图就可以想到,用分面图就ok了,实际操作过程发现和我们之前的内容几乎一样(那么这两个方式可以整合到一个函数中嘛?可以呀,但我实在不行弄了,单个分开挺好的。所以就不需要大家费劲的一步步操作,直接写成函数,当然了,
2025-05-04 21:12:03
305
原创 Scanpy单细胞h5ad数据转化为Seurat对象
一般而言,R分析单细胞使用Seurat,python分析单细胞使用Scanpy,都是很好得工作。可是有些时候,我们希望两者之间进行转化,或者更多的情况是可以自由切换进行数据分析。因为我们没有scanpy构建的数据,以及考虑到一些包的更新,方便转化过程中一些error的解决,所以我们按照官网流程走了一遍scanpy分析,流程在文后,开头先上重点内容吧!一、SeuratDisk: 推荐指数⭐⭐⭐⭐。二、anndataR: 推荐指数⭐⭐⭐。三、schard: 推荐指数⭐⭐⭐⭐⭐。
2025-05-04 21:10:57
467
原创 【改装函数】弦图-可视化cellphonedb细胞互作结果
我们通过对cpdb结果的整合得到cpdb_pbmc_summary,这里我们对结果进行可视化,主要是弦图的可视化,看了一下,之前好像对于cpdb没有做过太多的弦图。为了方便,我们借助了R包和一些文章,然后进行了修改,包装为可视化函数,方便使用。有一个包italk也是分析互作的,但是我觉得它的可视化还挺好,可以直接拿来用,之前也演示了cellchat的结果,这里我们将LRPlot函数进行修改,能够适用于于我们的分析可视化:展示不同细胞之间的互作,以及受配体对,如果需要展示特定的,可以自行筛选数据!
2025-05-04 21:10:04
455
原创 复现NC图表:二分图 (bipartite plot) 网络绘制(三种方法)-应用于细胞互作受配体展示-调控网络展示等等
如题,这个标题有点长,首先我们需要展示的图是bipartite plot,中文有叫二分图、连线图的,总之就是展示两组之间网络关系。可以应用的地方有很多,不只是我们介绍的互作关系、或者ligands-target。起源是一篇《nature communications》文章的图,它展示的是ligand于targets。原文提供了代码,可以学习!ggraph,首先相比于igraph,在很多设置上因为与ggplot互通,所以会简单很多,没有那么复杂,可操作性更强。layout可以自己设定,也可以参照上面的!
2025-05-04 21:08:47
251
原创 【我想要风一样的自由】高级网络图绘制函数
近期也有小伙伴问道类似的图,因为原图最麻烦的地方在于节点和边的调整,也就是layout调整,基础一般的小伙伴会出现很多问题,我实在不想再受麻烦了,所以整函数吧,只需要按照要求输入数据,其他的交给函数。同时,我们的函数要的就是自由,这个网络图的调整和layout位置上,给予了最大的自由,你随意整,爱咋排列咋排列!首先看看函数主体:如果你实在很懒,大多数参数都给默认了,唯一要求的就是自己调节位置,数据按照我们的要求整理!TF-target关系测试,还是完美!测试2,通路与基因:还是完美!看看测试效果:完美!
2025-05-04 20:54:43
129
原创 单细胞基因热图多重注释函数-可标记基因及添加富集分析结果
然后对其功能进行了增强,当然了,还是那句话,框架我们提供了,你需要做其他任何个性化或者增添功能,直接修改即可,一个函数也不可能完成所有事。函数参数如下:增加的参数首先第一个rownames_anno,传入一个向量,是需要标记的基因,如果基因过多的时候,不适宜全部展示,show_row_names选择F。对应的注释传入enrich_terms,是一个list,此外,添加富集注释,一定要设置cluster_order,而且cluster_gene_length要与cluster_order一致。
2025-05-04 20:51:43
297
原创 学习NC文章:单细胞亚群相关性及三角热图绘制
热图我们做过很多,参照公众号热图系列,这里介绍三角热图的绘制,演示corrplot的参数设置。首先计算相关性,因为我没有亚群的数据,所以自己虚构了:这篇文章的方式和我们以前的分享大差不差,但是可以学习新的代码思路。可以将不同来源大群的亚群用不同的颜色标注。
2025-05-04 20:50:26
686
原创 Circular Plot系列(一): 环形热图绘制
基础图形出来了,感觉把平常的热图给掰弯了,现在还缺少legend和sample名:添加是比较麻烦的,需要为整个轨道创建绘图区域,使用函数circos.track():添加文字使用circos.text,列名的位置需要根据自己的实际数据,调整x,y轴的坐标慢慢实现,如果感觉调整费时间,可以导出手动修饰,这也是circlize的一个不方便之处。然而,我们前面也介绍了,circos.heatmap有一个参数,split,热图可以按照行的分组split,这里演示split以及添加分组注释。
2025-05-04 20:46:51
643
原创 Circular Plot系列(三):【视频教程】复现NCS图表之高大上的单细胞UMAP环形图
这又是一个高大上且炫酷的单细胞UMAP图,展示的信息很多,有大类细胞和亚群,以及marker基因和cell count信息,还可以增加其他的分组信息等等。没错,看这个图就是circlize一层层画的。2、环形图的思路上与原文的图有些不同,可以明显看出,我们的图是直接分扇区画的,原文的图是一起画的。我们的好处在于画图简洁,容易理解。3、我们的环形图颜色是围绕UMAP图画的,原文很随心,没有考虑两者位置关系!1、需要注意的是最后的UMAP和环形图建议手动拼接更方便。
2025-05-04 20:45:47
271
原创 Circular Plot系列(五): circle plot展示单细胞互作
这是我们circle系列的最后一节,我想常见的弦图是绕不开的,所以最后从前面介绍的circle plot思路,做一遍弦图。其实前面的内容如果消化了,plot互作弦图也就不成什么问题了。[图片上传失败...(image-2034cb-1745423123645)][图片上传失败...(image-beac72-1745423123645)][图片上传失败...(image-71fb3-1745423123645)]最后添加互作线,需要使用circos.link函数,连线颜色表示互作强度。
2025-05-04 20:44:53
389
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人