TS的美梦
码龄7年
关注
提问 私信
  • 博客:592,646
    592,646
    总访问量
  • 167
    原创
  • 1,660,518
    排名
  • 865
    粉丝
  • 142
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-04-27
博客简介:

qq_42090739的博客

查看详细资料
个人成就
  • 获得401次点赞
  • 内容获得169次评论
  • 获得2,792次收藏
  • 代码片获得27,258次分享
创作历程
  • 55篇
    2023年
  • 90篇
    2022年
  • 22篇
    2021年
成就勋章
TA的专栏
  • 热图
    9篇
  • 单细胞
    7篇
  • 复现NC
    5篇
  • 单细胞GSVA分析
    2篇
兴趣领域 设置
  • Python
    python
  • 大数据
    大数据
  • 其他
    经验分享
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

marker基因注释热图可视化函数(视频教程-通用函数)

这里我们可能会发现一个问题,明明是每个celltype10个gene,为什么行注释好像不是很对,这是应为有些基因不仅在一 中celltype中高表达,而数据是按照表达从高到低排序的,所以才会出现这个问题,可以自行调整注释的数目,或者不采用注释等。接下来我们看看函数具体的使用,首先我们用一个ATAC TF分析的数据,这个矩阵是已经导出的,行是celltype,列是TF。需要注意一下,函数有一个参数data_scale,假设你的数据不需要scale标准化,那么参数选择T,作图使用你的原始数 据。
原创
发布博客 2023.10.11 ·
937 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

(视频教程)Complexheatmap做热图之设置不一样的注释效果

热图我们号的热图系列已经写的很完善了,也写过其他的热图,随便在公众号检索关键词”热图“就有很多,这里就不再列举了。近期关注我们号的小伙伴应该了解,我们最近出的作图函数基本上都是采用点的注释,而很多文章中的热图也是这种形式,可能是有PS,但是我们还是可以使用函数代码实现,所以这里我们写一下。这里我们的示例数据是单细胞,其他数据也是一样的,我们只不过是利用单细胞数据构建一个作图的矩阵而已,作图使用的是Heatmap函数。调整下列的顺序:​​​​​​​。作图:​​​​​​​。
原创
发布博客 2023.10.11 ·
602 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(视频教程)单细胞转录组多组差异基因分析及可视化函数

接下来我们测试一下:这里差异基因的分析使用的是Seurat的Findmarkers函数,所以一些参数和Findmarkers是一样的,自行调节。最好可以将logfc.threshold和min.pct设置为0,这样就可以获得所有的基因,这个结果我们函数是直接保存在相关路径中的,那么这么做有什么用呢?很显然,由于不知道差异结果如何,所以上面的图参数没有调整,不是很好,我们需要进行细节调整。显然是很麻烦的,我们可考虑到这个问题。此外,我们直接将差异基因的分析和可视化包装成一个通用的函数,函数有一定的可调节性。
原创
发布博客 2023.08.28 ·
2034 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

(视频教程)单细胞marker基因展示值等高线密度图

原文作者有很多的函数上传到github,自行下载原文查看,还是有很多好代码的,但是它的代码并不能满足我们复杂的作图。而且数据完全不一样。不过它图的修饰和颜色可以参考。但是小伙伴发现这个图只有表达的细胞上面添加了等高线密度。所以这里我们修改一下,其实很简单,只需要调整密度的表达量阈值即可。然后是多个marker的展示:增加ncol参数。最后看一下UMAP降维的数据:​​​​​​​。接下来我们看看具体的效果。
原创
发布博客 2023.08.28 ·
755 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

专治疗懒病:GO、KEGG富集分析一体函数

演示了差异基因KEGG或者GO的分析流程。其实差异基因的富集分析输入的文件只需要一组基因就可以了。所以我们发挥了专治懒病的优良传统,将KEGG、GO(BP、CC、MF)的分析封装为一个函数,您只需要提供gene,选择物种即可,只有human和mouse。而且一次性完成KEGG和GO分析结果,免去了分析两次的麻烦。这里我们直接用向量提供了基因。如果您的文件是差异基因,很好弄,只需要$符号传入gene symbol那一列即可。有需要的可以试一下,总之是为了省时省力,那些在线的分析工具的底层原理也就是这样。
原创
发布博客 2023.08.10 ·
872 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

复现Cell图表:pyscenic分析之转录因子二项值热图

今天我们复现一篇cell子刊的图表,这篇文章有一副关于转录因子的图表,观察这个图有什么特点呢?第一是热图是二项值热图,只有0,1两个值,我们知道,在R语言版本的SCENIC分析中,最后可以得到二项值热图,那么pyscenic的分析结果中也是可以进行二项值分析并做热图的。第二是热图左侧注释有auc值的注释,热图是按照分组split的,而且两组的celltype分布是对称的。第三则是左侧行名的展示。我们的复现结果如下,因为数据是随意挑选的,所以结果看上去没有原图那么明显,但是所有的元素我们都完成了。
原创
发布博客 2023.08.10 ·
784 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pyscenic分析:视频教程

我们也说过,我们号是放弃R语言版的SCENIC的分析了,因为它比较耗费计算资源和时间,所以我们的单细胞转录因子分析教程都是基于pyscenic的分析进行的。有些说想知道整个运行过程是怎么样的,所以我们出了这个视频教程,演示整个pyscenic的流程。我们的这个视频从数据准备、软件安装、步骤分析、镜像分析等等方面,展示了pyscenic分析的过程,最终得到分析结果。得到分析结果之后,那么后续的内容也就好办了,我们也写了很多的R语言版的分析和可视化,以及python版本的分析可视化。
原创
发布博客 2023.08.10 ·
2280 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

玩转单细胞(10):替换单细胞Seurat对象UMAP坐标

今天这个帖子的起因是这样的。有小伙伴说自己在GEO数据库上看中了一个单细胞数据,作者提供了样本的表达矩阵,还提供了注释好celltype和坐标信息的metadata。小伙伴利用这个数据并不是想重新分析,而是想要原文作者一模一样的聚类降维,然后进行一些比较,所以说是想还原这个数据。如果不是原文作者提供了包含cell type和细胞坐标信息的metadata,那么还真不能,但是有数据就好办了。看这个图和原文还有差距比较大的,我们将原文作者的celltype信息合UMAP坐标信息替换一下。
原创
发布博客 2023.07.19 ·
3310 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

ggraph做环形网络互作图---一个简单的例子

这里我们以基因互作演示一个简单的网络图示意。第一:基因按照分组展示。第二:上下调基因也区分展示出来。其实,就是一个非常简单的网络图,很基础,主要是为了熟悉下网络的设置等等。首先准备网络数据,我这里是 STRING网络分析的结果。最后构建ggraph作图数据。ggraph作图重要的是构建好作图数据。ggraph是ggplot2的拓展包,所以作图设置和ggplot类似。不同组的基因按照不同的颜色区别,上下调基因按照节点边框颜色区分。本贴示例数据及详细注释代码已上传群文件,请自行下载。
原创
发布博客 2023.07.19 ·
1337 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

注释气泡图函数(更新)

主要更新的内容是一些之前遗留的疏忽错误,例如气泡过大的问题等等。此外小伙伴反应之后,我们也发现,之前的函数在做单细胞气泡图的时候函数没有提供修改因子顺序,因为order=T设置之后导致气泡是按照从大到小排列的。这个函数还是受到很多小伙伴的喜爱的。可以看到,顶部分组排序是按照首字母排序的,数据不是从到大到小从左到右排列。那么order参数选择F,用level设置自己需要的顺序,groups也是可以设置的。为了演示,我们换一个数据,其他的内容不变,只演示单细胞的内容。我们先按照默认的做一下,order=T。
原创
发布博客 2023.07.19 ·
1099 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

复现Nature图表:GSEA分析及可视化包装函数

后来干脆一不做二不休,写一个函数吧,有差异分析结果即可,可视化也是一键出结果。我们此部分一共有两个函数,一个是KS_GSEA,作用是进行转录组数据GSEA分析,提供clusterProfiler和fgsea两种R包分析方式,KS_GSEA适用于human和mouse两个物种,支持KEGG、GO(BP)的GSEA分析。NES
原创
发布博客 2023.07.19 ·
1875 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

复现SCI图表:Cellchat多组结果受配体结果气泡图可视化

其实到这里就差不多了,x轴的label、已经legend都可以通过AI的形式修饰,这样还最简单,当然了,提取数据后用ggplot2按照我们之前很多帖子的方式,也是可以完成的,但是我觉得没必要了。小伙伴的问题所在于横坐标是每个celltype下包含每个分组,其实但凡思考一下,或者自己摸索过就会一眼看出,这就是cellchat多组结果的可视化,这也就是我第一眼就说这是cellchat默认做的图。可是我们也知道,cellchat流程很繁琐,如果我一个一个的去做太费劲,这里3各样本还好,假设是5个六个不得烦死。
原创
发布博客 2023.07.06 ·
1911 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

GO、KEGG(批量分组)分析及可视化

第二个问题是有小伙伴发来图让复现,是富集结果的展示,乍一看很复杂,既是网络图,又是多组的,其实很简单,clusterProfiler多组富集分析和enrichplot早就解决了这个问题。我们演示的时候都是直接提供了富集的结果文件,一般演示为了图方便,也是利用在线工具cytoscape做的。是网络的形式,GO、KEGG结果都可以展示,还是可以。首先我们做一下单独的GO、KEGG分析,这里我们使用的是引用很高的,基本上人人都在用的余老师的R包-clusterProfiler,相信大家都很熟悉了。
原创
发布博客 2023.06.29 ·
2706 阅读 ·
2 点赞 ·
1 评论 ·
17 收藏

复现Immunity文章图表:分组雷达图展示富集结果

首先我们分析了一组数据的差异基因,利用上下调差异基因做了GO富集,展示相关的结果。后来有小伙伴反应说有比这个更好的雷达图,是一篇Immunity上的文章,也是利用雷达图展示通路富集的结果,其实也是一样,只不过是分组了,我们还是用fmsb包进行复现。当然了也有其他的包做雷达图,例如ggradar或者ggplot2也能实现,感兴趣的可以自行探索,我们就不再深究了,这个展示应用还是可以的。我们整理一下,挑选需要的通路进行展示。复现基本上90%是完成了,但是有一点没有,就是点用渐变来实现,不知道这个包有没有办法。
原创
发布博客 2023.06.25 ·
378 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

UMAP/TSNE降维图结合细胞比例饼图

总之,这个图还是很有用的,一个图展示了多个信息,但是凑图这个路被堵死了[图片上传中...(image-152128-1687142947490-4)]然后计算细胞比例,添加上每个细胞群中心位置,用于添加饼图。也可以添加上细胞群的数量,后面做一个相对化处理,用来表示饼图大小,这个图就会更加生动。在这样就完成了,感兴趣的小伙伴可以在自己文章里面展示起来了。本来是一个简简单单的小破图, 可是需求这个东西是无穷无尽的,以后可不敢乱提了。最后,将细胞比例也展示在饼图山,这样就完美了。
原创
发布博客 2023.06.19 ·
673 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

复现Science图表:细胞通讯受配体配对连线表达图(cellchat、cellphonedb)

之前微信群发布了一个图希望我们复现,是一篇science子刊的文章。展示的是细胞通讯的受配体对的表达情况。原文的方法部分描述如下,可以看出,作者展示的是cellchat结果的受配体对。但是我想cellphonedb的结果也是可以这样展示的。学习这一节的内容,其实不仅仅是这个图的复现,还是对ggplot2作图各种情况的处理,以及学习拼图。学习的时候也可以注意这些细节。复现这个还是花费了一番功夫,复现结果如下,结果最后需要用AI稍微排版一下,效果就更完美了。详情请至我们的公众号---KS科研分享与服务。
原创
发布博客 2023.06.16 ·
878 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

scPred:单细胞数据集有监督细胞聚类注释

假设这样一个场景,我们预先对某一个数据进行了完美的分群注释,尤其是细胞亚群,当我们要对另外一个数据集进行注释的时候,就可以将之前注释好的数据当作training数据,当前数据作为test数据,根据之前的注释对当前数据集进行分类。还有,做类器官发育的时候,需要要发育阶段的细胞进行分群注释,我们这个时候可以参考相同物种的正常发育顺序的单细胞数据集,对自己的数据进行注释。我们利用前面的数据对我们的数据集进行注释。鉴定到的细胞聚类还是可以的。接下来对一个新的数据进行正常的降维分析,然后利用之前的数据集对其注释。
原创
发布博客 2023.06.13 ·
678 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

UCell:单细胞评分分析R包及可视化应用

最近看到一个评分R包,感觉还是挺好的这里分享一下。Ucell是基于Mann-Whitney U统计的单细胞评分R包,灵感来源于SUCell,使用起来稳定性较好,且与其他的方式相比较,Ucell计算所需的时间和耗费的内存更小。Ucell在高分SCI文章的应用还是挺多的,我们在自己的分析中也可以视情况选择使用。这里卖个关子,我们做了那么多的ggplot可视化,给大家思考一下,细胞数是如何添加上的(纯代码,简单的方式)。
原创
发布博客 2023.06.13 ·
2710 阅读 ·
1 点赞 ·
1 评论 ·
17 收藏

pySCENIC单细胞转录因子分析更新(2):python版分析及可视化

最近公众号小伙伴好像扎堆做单细胞转录因子富集分析,这里还是建议使用服务器,因为自己电脑可能跑起来比较费劲。我们也在上一篇内容里面对分析进行了更新,我们提供的方法都在liunux终端的conda环境中运行。我们是在R语言里面提取的seurat单细胞的矩阵去python中分析,所以最后可视化的时候需要将R里面的文件转化为python可读可操作的对象。我们封装了两个函数,第一个是R里面数据提取seurat_to_adata.R,第二个是python中数据构建函数seurat_to_adata.py。
原创
发布博客 2023.06.13 ·
1565 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pySCENIC单细胞转录因子分析更新:数据库、软件更新

**pySCENIC全部往期精彩系列首先说一句,我们之前也发过R语言版本的SCENIC,但是后来我们感觉容易出错,而且费时,所以就没有再探究过。可是总是有小伙伴喜欢跑R,然后说这里错了,那里找不见,其实我们的帖子写于2022年,但是数据库已经更新了,去官网下载新的数据库,不能无脑跑代码。回到pySCENIC,之前我们写过整个系列4篇帖子,分析可视化都是很完善了。可是近期跑的时候发现在第一步有点问题,要么跑不动,要么出错,怀疑是软件和数据库没有更新的缘故,故而更新一下测试。这个帖子主要有两部分内容。
原创
发布博客 2023.06.13 ·
2069 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏
加载更多