初级算法梳理 Task3 决策树

  1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度) 2.决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景
  2. 回归树原理
  3. 决策树防止过拟合手段
  4. 模型评估
  5. sklearn参数详解,Python绘制决策树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值