Backpack

Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?

Example

Example 1:
	Input:  [3,4,8,5], backpack size=10
	Output:  9

Example 2:
	Input:  [2,3,5,7], backpack size=12
	Output:  12
	

Challenge

O(n x m) time and O(m) memory.

O(n x m) memory is also acceptable if you do not know how to optimize memory.

Notice

You can not divide any item into small pieces.

思路:用f[i][j] 表示用前i个物品能否装满容量为j的情况,能true,不能false;最后再从右往左扫描一次,第一个true就是最大的容量能够装的;注意m == 0 的时候,所有的是dp[i][0] 是true,不装就完事了,是可以满足size = 0 的情况的;

public class Solution {
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    public int backPack(int m, int[] A) {
        int n = A.length;
        boolean[][] dp = new boolean[n + 1][m + 1];
        dp[0][0] = true;
        for(int j = 1; j <= m; j++) {
            dp[0][j] = false;
        }

        for(int i = 1; i <= n; i++) {
            for(int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - A[i - 1] >= 0) {
                    dp[i][j] |= dp[i - 1][j - A[i - 1]];
                }
            }
        }

        int max = 0;
        for(int j = m; j >= 0; j--) {
            if(dp[n][j]) {
                max = j;
                break;
            }
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值