The k Strongest Values in an Array

Given an array of integers arr and an integer k.

A value arr[i] is said to be stronger than a value arr[j] if |arr[i] - m| > |arr[j] - m| where m is the median of the array.
If |arr[i] - m| == |arr[j] - m|, then arr[i] is said to be stronger than arr[j] if arr[i] > arr[j].

Return a list of the strongest k values in the array. return the answer in any arbitrary order.

Median is the middle value in an ordered integer list. More formally, if the length of the list is n, the median is the element in position ((n - 1) / 2) in the sorted list (0-indexed).

  • For arr = [6, -3, 7, 2, 11]n = 5 and the median is obtained by sorting the array arr = [-3, 2, 6, 7, 11] and the median is arr[m] where m = ((5 - 1) / 2) = 2. The median is 6.
  • For arr = [-7, 22, 17, 3]n = 4 and the median is obtained by sorting the array arr = [-7, 3, 17, 22] and the median is arr[m] where m = ((4 - 1) / 2) = 1. The median is 3.

Example 1:

Input: arr = [1,2,3,4,5], k = 2
Output: [5,1]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,1,4,2,3]. The strongest 2 elements are [5, 1]. [1, 5] is also accepted answer.
Please note that although |5 - 3| == |1 - 3| but 5 is stronger than 1 because 5 > 1.

Example 2:

Input: arr = [1,1,3,5,5], k = 2
Output: [5,5]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,5,1,1,3]. The strongest 2 elements are [5, 5].

Example 3:

Input: arr = [6,7,11,7,6,8], k = 5
Output: [11,8,6,6,7]
Explanation: Median is 7, the elements of the array sorted by the strongest are [11,8,6,6,7,7].
Any permutation of [11,8,6,6,7] is accepted.

Example 4:

Input: arr = [6,-3,7,2,11], k = 3
Output: [-3,11,2]

Example 5:

Input: arr = [-7,22,17,3], k = 2
Output: [22,17]

Constraints:

  • 1 <= arr.length <= 10^5
  • -10^5 <= arr[i] <= 10^5
  • 1 <= k <= arr.length

思路:就是一个求median加上pq的扫描,最后输出; O(nlogn + n) = O(nlogn);

class Solution {
    private class Node {
        public int dis;
        public int value;
        public Node(int dis, int value) {
            this.dis = dis;
            this.value = value;
        }
    }
    
    private class NodeComparator implements Comparator<Node> {
        @Override
        public int compare(Node a, Node b) {
            if(a.dis != b.dis) {
                return a.dis - b.dis;
            } else {
                return a.value - b.value;
            }
        }
    }
    
    public int[] getStrongest(int[] arr, int k) {
        int median = getMedian(arr);
        PriorityQueue<Node> pq = new PriorityQueue<Node>(new NodeComparator());
        for(int i = 0; i < arr.length; i++) {
            Node node = new Node(Math.abs(arr[i] - median), arr[i]);
            if(pq.isEmpty() || pq.size() < k) {
                pq.offer(node);
            } else {
                if(node.dis > pq.peek().dis || (node.dis == pq.peek().dis && node.value > pq.peek().value)) {
                    pq.poll();
                    pq.offer(node);
                }
            }
        }
        
        int[] res = new int[pq.size()];
        int index = 0;
        while(!pq.isEmpty()) {
            res[index++] = pq.poll().value;
        }
        return res;
    }
    
    private int getMedian(int[] arr) {
        int n = arr.length;
        int[] temp = new int[n];
        for(int i = 0; i < n; i++) {
            temp[i] = arr[i];
        }
        Arrays.sort(temp);
        return temp[(n - 1) / 2];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值