The set [1,2,3,...,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
- Given n will be between 1 and 9 inclusive.
- Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
思路:这是个数学归纳法的题目,找pattern
say n = 4, you have {1, 2, 3, 4}
If you were to list out all the permutations you have
1 + (permutations of 2, 3, 4)
2 + (permutations of 1, 3, 4)
3 + (permutations of 1, 2, 4)
4 + (permutations of 1, 2, 3)
We know how to calculate the number of permutations of n numbers... n! So each of those with permutations of 3 numbers means there are 6 possible permutations. Meaning there would be a total of 24 permutations in this particular one. So if you were to look for the (k = 14) 14th permutation, it would be in the
3 + (permutations of 1, 2, 4) subset.
To programmatically get that, you take k = 13 (subtract 1 because of things always starting at 0) and divide that by the 6 we got from the factorial, which would give you the index of the number you want. In the array {1, 2, 3, 4}, k/(n-1)! = 13/(4-1)! = 13/3! = 13/6 = 2. The array {1, 2, 3, 4} has a value of 3 at index 2. So the first number is a 3.
Then the problem repeats with less numbers.
The permutations of {1, 2, 4} would be:
1 + (permutations of 2, 4)
2 + (permutations of 1, 4)
4 + (permutations of 1, 2)
But our k is no longer the 14th, because in the previous step, we've already eliminated the 12 4-number permutations starting with 1 and 2. So you subtract 12 from k.. which gives you 1. Programmatically that would be...
k = k - (index from previous) * (n-1)! = k - 2*(n-1)! = 13 - 2*(3)! = 1
In this second step, permutations of 2 numbers has only 2 possibilities, meaning each of the three permutations listed above a has two possibilities, giving a total of 6. We're looking for the first one, so that would be in the 1 + (permutations of 2, 4) subset.
Meaning: index to get number from is k / (n - 2)! = 1 / (4-2)! = 1 / 2! = 0.. from {1, 2, 4}, index 0 is 1
so the numbers we have so far is 3, 1... and then repeating without explanations.
思路就是:k/ (n-i)!之后,计算出index,由于1,2,3,4是0开始的index,所以k一开始要减去1.这样对应的就是以0开始的index的数,得到第一个数之后,k -= index * factorial[n - i]; 然后继续子问题;O(N^2), space O(N);
class Solution {
public String getPermutation(int n, int k) {
int[] factorial = new int[n + 1];
StringBuilder sb = new StringBuilder();
List<Integer> numbers = new ArrayList<Integer>();
factorial[0] = 1;
for(int i = 1; i <= n; i++) {
factorial[i] = factorial[i - 1] * i;
numbers.add(i);
}
k--;
for(int i = 1; i <= n; i++) {
int index = k / factorial[n - i];
sb.append(String.valueOf(numbers.get(index)));
numbers.remove(index);
k -= index * factorial[n - i];
}
return sb.toString();
}
}