4Sum

Given an array S of n integers, are there elements abc, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note: The solution set must not contain duplicate quadruplets.

For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.

A solution set is:
[
  [-1,  0, 0, 1],
  [-2, -1, 1, 2],
  [-2,  0, 0, 2]
]
思路:用Two Sum的思想,用hashmap去找pair的sum,这样做可以做到O(N^2)的。注意去重复。

public class Solution {
    class Pair {
        private int i;
        private int j;
        Pair(int i, int j){
            this.i = i;
            this.j = j;
        }
    }
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> lists = new ArrayList<List<Integer>>();
        if(nums == null || nums.length < 4) return lists;
        
        HashMap<Integer, List<Pair>> hashmap = new HashMap<Integer, List<Pair>>();
        for(int i=0; i<nums.length-1; i++){
            for(int j=i+1; j<nums.length; j++){
                int sum = nums[i]+nums[j];
                if(hashmap.containsKey(sum)){
                    hashmap.get(sum).add(new Pair(i, j));
                } else {
                    List<Pair> list = new ArrayList<Pair>();
                    list.add(new Pair(i, j));
                    hashmap.put(sum,list);
                }
            }
        }
        
        HashSet<List<Integer>> hashset = new HashSet<List<Integer>>();
        Iterator its = hashmap.entrySet().iterator();
        while(its.hasNext()){
            Map.Entry pairs = (Map.Entry)its.next();
            int a = (Integer)pairs.getKey();
            List<Pair> list1 = (List<Pair>)pairs.getValue();
            List<Pair> list2 = (List<Pair>)hashmap.get(target-a);
            if(list2 != null){
                for(Pair p1: list1){
                    for(Pair p2: list2){
                        if( (p1.i == p2.i) 
                        || (p1.i == p2.j) 
                        || (p1.j == p2.i) 
                        || (p1.j == p2.j)){
                            continue;
                        } else {
                            ArrayList<Integer> list = new ArrayList<Integer>();
                            list.add(nums[p1.i]); 
                            list.add(nums[p1.j]);
                            list.add(nums[p2.i]); 
                            list.add(nums[p2.j]);
                            Collections.sort(list);
                            if(!hashset.contains(list)){
                                hashset.add(list);
                                lists.add(list);
                            }
                        }
                    }
                }
            }
        }
        
        return lists;
    }
}

思路2: O(N^3)的方法,用hashset去重复。

public class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> lists = new ArrayList<List<Integer>>();
        if(nums == null || nums.length == 0) return lists;
        
        Arrays.sort(nums);
        HashSet<List<Integer>> hashset = new HashSet<List<Integer>>();
        for(int i=0; i<nums.length-3; i++){
            for(int j=i+1; j<nums.length-2; j++){
                int k = j+1; int l = nums.length-1;
                while(k<l){
                    int sum = nums[i]+nums[j]+nums[k]+nums[l];
                    if(sum < target){
                        k++;
                    } else if(sum > target){
                        l--;
                    } else { // sum == 0;
                        ArrayList<Integer> list = new ArrayList<Integer>();
                        list.add(nums[i]);
                        list.add(nums[j]);
                        list.add(nums[k]);
                        list.add(nums[l]);
                        if(!hashset.contains(list)){
                            hashset.add(list);
                            lists.add(list);
                        }
                        k++;
                        l--;
                    }
                }
            }
        }
        return lists;
    }
}
思路3:O(n^3)的方法,用指针去重复。注意第二层循环去重是: j>i+1 && nums[j] == nums[j-1]

public class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> lists = new ArrayList<List<Integer>>();
        if(nums == null || nums.length == 0) return lists;
        Arrays.sort(nums);
        for(int i=0; i<nums.length-3; i++){
            if(i>0 && nums[i] == nums[i-1]){
                continue;
            }
            for(int j=i+1; j<nums.length-2; j++){
                if(j>i+1 && nums[j] == nums[j-1]){ // 注意这里是j>i+1
                    continue;
                }
                int k = j+1; int l = nums.length-1;
                while(k<l){
                    int sum = nums[i] + nums[j] + nums[k] + nums[l];
                    if(sum == target){ // 注意是target,不是0;
                        List<Integer> list = new ArrayList<Integer>();
                        list.add(nums[i]);
                        list.add(nums[j]);
                        list.add(nums[k]);
                        list.add(nums[l]);
                        lists.add(list);
                        k++;
                        l--;
                        while(k<l && nums[k] == nums[k-1] && nums[l] == nums[l+1]){
                            k++;
                            l--;
                        }
                    } else if( sum < target){ 
                        k++;
                    } else {
                        l--;
                    }
                }
            }
        }
        return lists;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值