题目如下:
已知线性表(a1 a2 a3 …an)按顺序存于内存,每个元素都是整数,试设计用最少时间把所有值为负数的元素移到全部正数值(假设0为正数)元素前边的算法:例:(x,-x,-x,x,x,-x …x)变为(-x,-x,-x…x,x,x)。
由于题目不是太明确,移动的时候是否要保持正负数原来的相对顺序,姑且认为无需保持原来的相对顺序。
一、 暴力的方法:
从左到右直接遍历整个线性表,遇到负元素就左移直至其左边都是负的元素。代码如下:
int alg1(int *a)
{
int cnt = 0;
for(int i = 1; i <= a[0]; i++)
{
if(a[i] < 0)
{
int b = a[i];
cnt++;
int j = i-1;
while(j > 0 && a[j] >= 0)
{
a[j+1] = a[j];
j--;
cnt++;
}
a[j+1] = b;
cnt++;
}
}
ouf<<"cnt="<<cnt<<":";
for(int i = 1; i <= a[0]; i++)
ouf<<a[i]<<" ";
ouf<<endl;
return cnt;
}
这种方法的复杂度为O(n^2)
二、 改进的方法
可以考虑设置高低指针,低指针从左扫描直至遇到正元素,高指针从右开始扫描直至遇到负元素。然后交换高低指针所指元素。继续下一轮,直至所有的负元素都在左边。
int alg2(int *a)
{
int cnt = 0;
int low = 1, high = a[0];
while(low < high)
{
while(low < high && a[low] < 0)low++;
while(low < high && a[high] >= 0)high--;
int b = a[low];
a[low] = a[high];
a[high] = b;
cnt += 3;
}
ouf<<"cnt2="<<cnt<<":";
for(int i = 1; i <= a[0]; i++)
ouf<<a[i]<<" ";
ouf<<endl;
return cnt;
}
这种方法的复杂度为O(n)
是否还有第三种更好更巧妙的方法呢?