深度学习
WinneChan
做人最重要是有自己喜欢的东西
展开
-
Dropout相关问题
防止过拟合的方法: 提前终止(当验证集上的效果变差的时候) L1和L2正则化加权 soft weight sharing dropout dropout率的选择 经过交叉验证,隐含节点dropout率等于0.5的时候效果最好,原因是0.5的时候dropout随机生成的网络结构最多。 dropout也可以被用作一种添加噪声的方法,直接对input进行操作。输入层设为更接近1的数。使得输入变化不会太大(转载 2017-02-18 20:49:00 · 1520 阅读 · 0 评论 -
Batch Normalization
参考博客: 深度学习(二十九)Batch Normalization 学习笔记 谈谈Tensorflow的Batch Normalization 数据处理中白化Whitening的作用图解分析原论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift归一化后有什原创 2017-02-27 14:43:07 · 357 阅读 · 0 评论 -
ROI Pooling
传统的object detection一般分两步: (1)根据某些规则或者先验知识,先在输入图片上面搜索一堆可能存在物体的框框,叫做region of interest。 (2)然后把这些框扔进CNN进行分类。 这样做有几个明显的缺点: (1)训练是multi-stage,不是end-to-end的。 (2)为了提高精度,往往会生成很多很多候选框,这样会大大增加检测时间。 于是,出现了Fast R...翻译 2019-04-22 18:18:23 · 324 阅读 · 0 评论