DGL GATConv 源码解析

GATConv源码链接.

关于计算eij的部分,官方给出的解释

关键在于函数graph.apply_edges(fn.u_add_v('el', 'er', 'e'))是对所有边都进行计算,而不是只把传入的el和er进行简单相加。

还有一个是参数混淆:in_feats = out_feats * num_heads(和我们平时定义一个layer的习惯不一样)。如果要实现Multi-Head Attention,最好自己在外面做一层Warppper来处理这个歧义性以及输出的处理方式(GATConv默认输出为(N,H,D),N是节点数,H是head个数,D是out_feats大小)。

"""Torch modules for graph attention networks(GAT)."""
# pylint: disable= no-member, arguments-differ, invalid-name
import torch as th
from torch import nn

from .... import function as fn
from ...functional import edge_softmax
from ....base import DGLError
from ..utils import Identity
from ....utils import expand_as_pair

# pylint: enable=W0235

class GATConv(nn.Module):
    r"""

    Description
    -----------
    Apply `Graph Attention Network <https://arxiv.org/pdf/1710.10903.pdf>`__
    over an input signal.

    .. math::
        h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} \alpha_{i,j} W^{(l)} h_j^{(l)}

    where :math:`\alpha_{ij}` is the attention score bewteen node :math:`i` and
    node :math:`j`:

    .. math::
        \alpha_{ij}^{l} &= \mathrm{softmax_i} (e_{ij}^{l})

        e_{ij}^{l} &= \mathrm{LeakyReLU}\left(\vec{a}^T [W h_{i} \| W h_{j}]\right)

    Parameters
    ----------
    in_feats : int, or pair of ints
        Input feature size; i.e, the number of dimensions of :math:`h_i^{(l)}`.
        GATConv can be applied on homogeneous graph and unidirectional
        `bipartite graph <https://docs.dgl.ai/generated/dgl.bipartite.html?highlight=bipartite>`__.
        If the layer is to be applied to a unidirectional bipartite graph, ``in_feats``
        specifies the input feature size on both the source and destination nodes.  If
        a scalar is given, the source and destination node feature size would take the
        same value.
    out_feats : int
        Output feature size; i.e, the number of dimensions of :math:`h_i^{(l+1)}`.
    num_heads : int
        Number of heads in Multi-Head Attention.
    feat_drop : float, optional
        Dropout rate on feature. Defaults: ``0``.
    attn_drop : float, optional
        Dropout rate on attention weight. Defaults: ``0``.
    negative_slope : float, optional
        LeakyReLU angle of negative slope. Defaults: ``0.2``.
    residual : bool, optional
        If True, use residual connection. Defaults: ``False``.
    activation : callable activation function/layer or None, optional.
        If not None, applies an activation function to the updated node features.
        Default: ``None``.
    allow_zero_in_degree : bool, optional
        If there are 0-in-degree nodes in the graph, output for those nodes will be invalid
        since no message will be passed to those nodes. This is harmful for some applications
        causing silent performance regression. This module will raise a DGLError if it detects
        0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
        and let the users handle it by themselves. Defaults: ``False``.
    bias : bool, optional
        If True, learns a bias term. Defaults: ``True``.

    Note
    ----
    Zero in-degree nodes will lead to invalid output value. This is because no message
    will be passed to those nodes, the aggregation function will be appied on empty input.
    A common practice to avoid this is to add a self-loop for each node in the graph if
    it is homogeneous, which can be achieved by:

    >>> g = ... # a DGLGraph
    >>> g = dgl.add_self_loop(g)

    Calling ``add_self_loop`` will not work for some graphs, for example, heterogeneous graph
    since the edge type can not be decided for self_loop edges. Set ``allow_zero_in_degree``
    to ``True`` for those cases to unblock the code and handle zero-in-degree nodes manually.
    A common practise to handle this is to filter out the nodes with zero-in-degree when use
    after conv.

    Examples
    --------
    >>> import dgl
    >>> import numpy as np
    >>> import torch as th
    >>> from dgl.nn import GATConv

    >>> # Case 1: Homogeneous graph
    >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
    >>> g = dgl.add_self_loop(g)
    >>> feat = th.ones(6, 10)
    >>> gatconv = GATConv(10, 2, num_heads=3)
    >>> res = gatconv(g, feat)
    >>> res
    tensor([[[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]],
            [[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]],
            [[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]],
            [[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]],
            [[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]],
            [[ 3.4570,  1.8634],
            [ 1.3805, -0.0762],
            [ 1.0390, -1.1479]]], grad_fn=<BinaryReduceBackward>)

    >>> # Case 2: Unidirectional bipartite graph
    >>> u = [0, 1, 0, 0, 1]
    >>> v = [0, 1, 2, 3, 2]
    >>> g = dgl.heterograph({('A', 'r', 'B'): (u, v)})
    >>> u_feat = th.tensor(np.random.rand(2, 5).astype(np.float32))
    >>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
    >>> gatconv = GATConv((5,10), 2, 3)
    >>> res = gatconv(g, (u_feat, v_feat))
    >>> res
    tensor([[[-0.6066,  1.0268],
            [-0.5945, -0.4801],
            [ 0.1594,  0.3825]],
            [[ 0.0268,  1.0783],
            [ 0.5041, -1.3025],
            [ 0.6568,  0.7048]],
            [[-0.2688,  1.0543],
            [-0.0315, -0.9016],
            [ 0.3943,  0.5347]],
            [[-0.6066,  1.0268],
            [-0.5945, -0.4801],
            [ 0.1594,  0.3825]]], grad_fn=<BinaryReduceBackward>)
    """
    def __init__(self,
                 in_feats,
                 out_feats,
                 num_heads,
                 feat_drop=0.,
                 attn_drop=0.,
                 negative_slope=0.2,
                 residual=False,
                 activation=None,
                 allow_zero_in_degree=False,
                 bias=True):
        super(GATConv, self).__init__()
        self._num_heads = num_heads
        self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
        self._out_feats = out_feats
        self._allow_zero_in_degree = allow_zero_in_degree
        if isinstance(in_feats, tuple):
            self.fc_src = nn.Linear(
                self._in_src_feats, out_feats * num_heads, bias=False)
            self.fc_dst = nn.Linear(
                self._in_dst_feats, out_feats * num_heads, bias=False)
        else:
            self.fc = nn.Linear(
                self._in_src_feats, out_feats * num_heads, bias=False)
        self.attn_l = nn.Parameter(th.FloatTensor(size=(1, num_heads, out_feats)))
        self.attn_r = nn.Parameter(th.FloatTensor(size=(1, num_heads, out_feats)))
        self.feat_drop = nn.Dropout(feat_drop)
        self.attn_drop = nn.Dropout(attn_drop)
        self.leaky_relu = nn.LeakyReLU(negative_slope)
        if bias:
            self.bias = nn.Parameter(th.FloatTensor(size=(num_heads * out_feats,)))
        else:
            self.register_buffer('bias', None)
        if residual:
            if self._in_dst_feats != out_feats * num_heads:
                self.res_fc = nn.Linear(
                    self._in_dst_feats, num_heads * out_feats, bias=False)
            else:
                self.res_fc = Identity()
        else:
            self.register_buffer('res_fc', None)
        self.reset_parameters()
        self.activation = activation

    def reset_parameters(self):
        """

        Description
        -----------
        Reinitialize learnable parameters.

        Note
        ----
        The fc weights :math:`W^{(l)}` are initialized using Glorot uniform initialization.
        The attention weights are using xavier initialization method.
        """
        gain = nn.init.calculate_gain('relu')
        if hasattr(self, 'fc'):
            nn.init.xavier_normal_(self.fc.weight, gain=gain)
        else:
            nn.init.xavier_normal_(self.fc_src.weight, gain=gain)
            nn.init.xavier_normal_(self.fc_dst.weight, gain=gain)
        nn.init.xavier_normal_(self.attn_l, gain=gain)
        nn.init.xavier_normal_(self.attn_r, gain=gain)
        if self.bias is not None:
            nn.init.constant_(self.bias, 0)
        if isinstance(self.res_fc, nn.Linear):
            nn.init.xavier_normal_(self.res_fc.weight, gain=gain)

    def set_allow_zero_in_degree(self, set_value):
        r"""

        Description
        -----------
        Set allow_zero_in_degree flag.

        Parameters
        ----------
        set_value : bool
            The value to be set to the flag.
        """
        self._allow_zero_in_degree = set_value

    def forward(self, graph, feat, get_attention=False):
        r"""

        Description
        -----------
        Compute graph attention network layer.

        Parameters
        ----------
        graph : DGLGraph
            The graph.
        feat : torch.Tensor or pair of torch.Tensor
            If a torch.Tensor is given, the input feature of shape :math:`(N, *, D_{in})` where
            :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
            If a pair of torch.Tensor is given, the pair must contain two tensors of shape
            :math:`(N_{in}, *, D_{in_{src}})` and :math:`(N_{out}, *, D_{in_{dst}})`.
        get_attention : bool, optional
            Whether to return the attention values. Default to False.

        Returns
        -------
        torch.Tensor
            The output feature of shape :math:`(N, *, H, D_{out})` where :math:`H`
            is the number of heads, and :math:`D_{out}` is size of output feature.
        torch.Tensor, optional
            The attention values of shape :math:`(E, *, H, 1)`, where :math:`E` is the number of
            edges. This is returned only when :attr:`get_attention` is ``True``.

        Raises
        ------
        DGLError
            If there are 0-in-degree nodes in the input graph, it will raise DGLError
            since no message will be passed to those nodes. This will cause invalid output.
            The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``.
        """
        with graph.local_scope():
            if not self._allow_zero_in_degree:
                if (graph.in_degrees() == 0).any():
                    raise DGLError('There are 0-in-degree nodes in the graph, '
                                   'output for those nodes will be invalid. '
                                   'This is harmful for some applications, '
                                   'causing silent performance regression. '
                                   'Adding self-loop on the input graph by '
                                   'calling `g = dgl.add_self_loop(g)` will resolve '
                                   'the issue. Setting ``allow_zero_in_degree`` '
                                   'to be `True` when constructing this module will '
                                   'suppress the check and let the code run.')

            if isinstance(feat, tuple):
                src_prefix_shape = feat[0].shape[:-1]
                dst_prefix_shape = feat[1].shape[:-1]
                h_src = self.feat_drop(feat[0])
                h_dst = self.feat_drop(feat[1])
                if not hasattr(self, 'fc_src'):
                    feat_src = self.fc(h_src).view(
                        *src_prefix_shape, self._num_heads, self._out_feats)
                    feat_dst = self.fc(h_dst).view(
                        *dst_prefix_shape, self._num_heads, self._out_feats)
                else:
                    feat_src = self.fc_src(h_src).view(
                        *src_prefix_shape, self._num_heads, self._out_feats)
                    feat_dst = self.fc_dst(h_dst).view(
                        *dst_prefix_shape, self._num_heads, self._out_feats)
            else:
                src_prefix_shape = dst_prefix_shape = feat.shape[:-1]
                h_src = h_dst = self.feat_drop(feat)
                feat_src = feat_dst = self.fc(h_src).view(
                    *src_prefix_shape, self._num_heads, self._out_feats)
                if graph.is_block:
                    feat_dst = feat_src[:graph.number_of_dst_nodes()]
                    h_dst = h_dst[:graph.number_of_dst_nodes()]
                    dst_prefix_shape = (graph.number_of_dst_nodes(),) + dst_prefix_shape[1:]
            # NOTE: GAT paper uses "first concatenation then linear projection"
            # to compute attention scores, while ours is "first projection then
            # addition", the two approaches are mathematically equivalent:
            # We decompose the weight vector a mentioned in the paper into
            # [a_l || a_r], then
            # a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
            # Our implementation is much efficient because we do not need to
            # save [Wh_i || Wh_j] on edges, which is not memory-efficient. Plus,
            # addition could be optimized with DGL's built-in function u_add_v,
            # which further speeds up computation and saves memory footprint.
            el = (feat_src * self.attn_l).sum(dim=-1).unsqueeze(-1)
            er = (feat_dst * self.attn_r).sum(dim=-1).unsqueeze(-1)
            graph.srcdata.update({'ft': feat_src, 'el': el})
            graph.dstdata.update({'er': er})
            # compute edge attention, el and er are a_l Wh_i and a_r Wh_j respectively.
            graph.apply_edges(fn.u_add_v('el', 'er', 'e')) # compute eij for all edges in graph in parallel
            e = self.leaky_relu(graph.edata.pop('e'))
            # compute softmax
            graph.edata['a'] = self.attn_drop(edge_softmax(graph, e))
            # message passing
            graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
                             fn.sum('m', 'ft'))
            rst = graph.dstdata['ft']
            # residual
            if self.res_fc is not None:
                # Use -1 rather than self._num_heads to handle broadcasting
                resval = self.res_fc(h_dst).view(*dst_prefix_shape, -1, self._out_feats)
                rst = rst + resval
            # bias
            if self.bias is not None:
                rst = rst + self.bias.view(
                    *((1,) * len(dst_prefix_shape)), self._num_heads, self._out_feats)
            # activation
            if self.activation:
                rst = self.activation(rst)

            if get_attention:
                return rst, graph.edata['a']
            else:
                return rst

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值