【Derivation】MarkDown Letex编码 之 正态分布特征函数证明

该博客详细证明了正态分布特征函数$varphi(u)=e^{jau-frac{1}{2}u^2sigma^2}$的数学推导过程,通过积分、微分方程和拉普拉斯变换等数学工具,展示了一步步得到该表达式的步骤。
摘要由CSDN通过智能技术生成
**求证:$\varphi(u)=e^{jau-\frac{1}{2}u^2\sigma^2} \ \ \ , t\in R $**  
**证:**
  
* *   $$\varphi(u)=\int _ {-\infty} ^ {+\infty} e^{jux}f(x)dx$$   $$=\int_ {-\infty}^{+\infty} e^{jux} \frac{1}{\sqrt{2\pi\sigma^2}}  e^{- \frac{(x-a)^2}{2\sigma^2}}dx$$
* 整理,得:
* $$\varphi(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx $$
* * beacuse $|jx  e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}| \leq |x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}$ and $ \frac{1}{\sqrt{2\pi}}|x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}} < +\infty$ , $so $可以对$\varphi(u)$求$u$的一阶导数,
* 有:  $$\varphi \prime(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} {jx}\ e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx   $$
综合可推:
 $$j{(u-j\frac{a}{\sigma^2})\varphi (u)}+\frac
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值