HDU 4912 Paths on the tree

43 篇文章 0 订阅
16 篇文章 0 订阅

题目:

给定一棵树和一些路径  问  最多能选出多少路径放在树上  使得各个路径间没有点交叉


思路:

LCA+贪心

对于一条路径  我们可以将它分成两部分  即 从u到lca 和 从v到lca  易知lca位于树上深度最浅的地方  而且如果这个lca被一条路径覆盖了  那么下面的子树都相当于被覆盖了

考虑到以x点为上述的lca点  那么如何选择经过x的路径呢  可以想到如果一条路径能放上去且不和子树中的路径冲突那么才去放它  为什么呢?  显然放一条路径相当于覆盖一棵树然后答案加一  那么如果这条路径和子树路径冲突放它是不值的  因为覆盖的树变大了  答案至少要减一再加一

因此得到策略  对于所有路径求lca  根据lca深度从深到浅安放路径  如果路径不和其他路径冲突则放上


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define N 100010
#define M 20
#define mp(x,y) make_pair(x,y)

int lca[N][M], dep[N], fa[N];
vector<pair<int, int> > ask[N];
vector<int> tree[N];
int n, m, ans;

void dfs(int u, int from) {
	int i, v;
	dep[u] = dep[from] + 1;
	lca[u][0] = from;
	for (i = 1; i < M; i++)
		lca[u][i] = lca[lca[u][i - 1]][i - 1];
	for (i = 0; i < tree[u].size(); i++) {
		v = tree[u][i];
		if (v != from)
			dfs(v, u);
	}
}

int getlca(int u, int v) {
	if (dep[v] > dep[u])
		swap(u, v);
	int i, tmp = dep[u] - dep[v];
	for (i = 19; tmp; i--) {
		if (tmp >= (1 << i)) {
			tmp -= (1 << i);
			u = lca[u][i];
		}
	}
	if (u == v)
		return u;
	for (i = 19; i >= 0; i--) {
		if (lca[u][i] != lca[v][i]) {
			u = lca[u][i];
			v = lca[v][i];
		}
	}
	return lca[u][0];
}

int getf(int x) {
	if (x != fa[x])
		fa[x] = getf(fa[x]);
	return fa[x];
}

void solve(int u, int from) {
	int i, v, f;
	for (i = 0; i < tree[u].size(); i++) {
		v = tree[u][i];
		if (v != from)
			solve(v, u);
	}
	for (i = 0; i < ask[u].size(); i++) {
		f = getf(ask[u][i].first);
		v = getf(ask[u][i].second);
		if (f == v && f == u) {
			ans++;
			break;
		}
	}
	if (i >= ask[u].size())
		fa[u] = lca[u][0];
}

int main() {
	int i, u, v;
	while (~scanf("%d%d", &n, &m)) {
		for (i = 1; i <= n; i++) {
			ask[i].clear();
			tree[i].clear();
			dep[i] = 0;
			fa[i] = i;
		}
		for (i = 1; i < n; i++) {
			scanf("%d%d", &u, &v);
			tree[u].push_back(v);
			tree[v].push_back(u);
		}
		dfs(1, 1);
		for (i = 1; i <= m; i++) {
			scanf("%d%d", &u, &v);
			ask[getlca(u, v)].push_back(mp(u,v));
		}
		ans = 0;
		solve(1, 1);
		printf("%d\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值