判断素数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。
判断的思路
方法1 数字 k 如果能被 2 ~ k-1 之间的任意一个数字整除,则 k 是合数,否则 k 是素数。
方法2 数字 K 如果能被 2 ~ k^(0.5) 之间的任意一个数字整除,则 k 是合数,否则 k 是素数。
C语言编程实现
#include<stdio.h>
#include<math.h>
void Prime1(int num)
{
int i;
if(num == 1)
printf(" 1 不是素数也不是合数\n");
else
for(i = 2;i <= num -1; i++)
if(num%i==0) break;
if(i < num) printf("%d 不是素数\n",num);
else printf("%d 是素数\n",num);
}
void Prime2(int num)
{
int i,k;
k = sqrt(num);
if(num == 1)
printf(" 1 不是素数也不是合数\n");
else
for(i = 2;i <= k; i++)
if(num%i==0) break;
if(i <= k) printf("%d 不是素数\n",num);
else printf("%d 是素数\n",num);
}
int main()
{
int num;
scanf("%d",&num);
Prime1(num);
Prime2(num);
return 0;
}
Python语言编程实现
import math
def Prime(num):
if num <= 1: return False
else:
for i in range(2, int(math.sqrt(num))+1):
if num % i == 0:
return False
return True
判断最小公倍数
辗转相除法
两个整数 a 和 b, a % b = c 如果 c 是 0,则 b 是两个数的最大公约数,如果 c 不为 0,则用 b % c = d,一直辗转判断,知道 余数为 0,则除数为 最小公倍数。
例如:27 和15, 27%15 = 12, 15%12 = 3, 12 % 3 = 0 。则 3 是最大的公约数。
C语言代码实现
#include<stdio.h>
void main()
{
int m,n,a,temp;
printf("输入两个整数:\n");
scanf("%d,%d",&m,&n);
if(m < n){temp = m; m = n; n = temp;}
while(a != 0)
{
a = m % n;
m = n;
n = a;
}
printf("%d",m);
}
Python代码实现
def gcd(m,n):
a = max(m,n)
b = min(m,n)
if a % b == 0:
return b
else:
return gcd(b,a%b)