C/Python编程实现判断素数以及最小公倍数

判断素数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。

判断的思路
方法1 数字 k 如果能被 2 ~ k-1 之间的任意一个数字整除,则 k 是合数,否则 k 是素数。
方法2 数字 K 如果能被 2 ~ k^(0.5) 之间的任意一个数字整除,则 k 是合数,否则 k 是素数。

C语言编程实现
#include<stdio.h>
#include<math.h>
void Prime1(int num)
{
    int i;
    if(num == 1)
        printf(" 1 不是素数也不是合数\n");
    else
        for(i = 2;i <= num -1; i++)
            if(num%i==0) break;
        if(i < num) printf("%d 不是素数\n",num);
        else printf("%d 是素数\n",num);
}
void Prime2(int num)
{
    int i,k;
    k = sqrt(num);
    if(num == 1)
        printf(" 1 不是素数也不是合数\n");
    else
        for(i = 2;i <= k; i++)
            if(num%i==0) break;
        if(i <= k) printf("%d 不是素数\n",num);
        else printf("%d 是素数\n",num);
}

int main()
{
    int num;
    scanf("%d",&num);
    Prime1(num);
    Prime2(num);
    return 0;
}
Python语言编程实现
import math
def Prime(num):
    if num <= 1: return False
    else:
        for i in range(2, int(math.sqrt(num))+1):
            if num % i == 0: 
                return False
        return True

判断最小公倍数
辗转相除法
两个整数 a 和 b, a % b = c 如果 c 是 0,则 b 是两个数的最大公约数,如果 c 不为 0,则用 b % c  = d,一直辗转判断,知道 余数为 0,则除数为 最小公倍数。
例如:27 和15, 27%15 = 12,  15%12 = 3, 12 % 3 = 0 。则 3 是最大的公约数。

C语言代码实现
#include<stdio.h>

void main()
{
    int m,n,a,temp;
    printf("输入两个整数:\n");
    scanf("%d,%d",&m,&n);
    if(m < n){temp = m; m = n; n = temp;}
    while(a != 0)
    {
        a = m % n;
        m = n;
        n = a;
    }
    printf("%d",m);
}
Python代码实现
def gcd(m,n):
    a = max(m,n)
    b = min(m,n)
    if a % b == 0:
        return b
    else:
        return gcd(b,a%b)















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值