mxnet fit.py

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013381011/article/details/80688969
def create(name='local'):
    """Creates a new KVStore.

    For single machine training, there are two commonly used types:

    ``local``: Copies all gradients to CPU memory and updates weights there.

    ``device``: Aggregates gradients and updates weights on GPUs. With this setting,
    the KVStore also attempts to use GPU peer-to-peer communication,
    potentially accelerating the communication.

    For distributed training, KVStore also supports a number of types:

    ``dist_sync``: Behaves similarly to ``local`` but with one major difference.
    With ``dist_sync``, batch-size now means the batch size used on each machine.
    So if there are ``n`` machines and we use batch size ``b``,
    then ``dist_sync`` behaves like ``local`` with batch size ``n * b``.

    ``dist_device_sync``: Identical to ``dist_sync`` with the difference similar
    to ``device`` vs ``local``.

    ``dist_async``: Performs asynchronous updates.
    The weights are updated whenever gradients are received from any machine.
    No two updates happen on the same weight at the same time. However, the order is not
    guaranteed.

    Parameters
    ----------
    name : {'local', 'device', 'nccl', 'dist_sync', 'dist_device_sync', 'dist_async'}
        The type of KVStore.
    Returns
    -------
    kv : KVStore
        The created KVStore.
    """
    if not isinstance(name, string_types):
        raise TypeError('name must be a string')
    handle = KVStoreHandle()
    check_call(_LIB.MXKVStoreCreate(c_str(name),
                                    ctypes.byref(handle)))
    return KVStore(handle)
import mxnet as mx
import logging
import os
import time


# 这个函数主要是和学习率相关,我们在启动训练的时候一般会添加这个参数:--lr,就是学习率,
# 如果不设置的话就会采用fine-tune.py中的默认lr。lr_factor表示当你要改变lr的时候是以多大比率改变,
# 举个例子,你原来lr是0.1,设置的lr_step_epochs是2,那么当你训练到epoch==2的时候,
# 你的lr就会变成lr*lr_factor,这个lr_factor在fit.py脚本中默认设置为0.1。
# 另外你的lr_step_epochs可以有多个值,比如(2,4,6),表示当epoch达到这些值的时候都要乘以lr_factor。
def _get_lr_scheduler(args, kv):
    if 'lr_factor' not in args or args.lr_factor >= 1:
        return (args.lr, None)
    epoch_size = args.num_examples / args.batch_size
    if 'dist' in args.kv_store:
        epoch_size /= kv.num_workers
    begin_epoch = args.load_epoch if args.load_epoch else 0
    step_epochs = [int(l) for l in args.lr_step_epochs.split(',')]
    lr = args.lr
    for s in step_epochs:
        if begin_epoch >= s:
            lr *= args.lr_factor
    if lr != args.lr:
        logging.info('Adjust learning rate to %e for epoch %d' %(lr, begin_epoch))

    steps = [epoch_size * (x-begin_epoch) for x in step_epochs if x-begin_epoch > 0]
    return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor))


# 导入模型,其实本质还是和fine-tune.py中的导入模型一样采用model.py脚本中的load_checkpoint函数。
# 首先判断你的load_epoch参数有没有设置,没设置的话运行时候会直接报错。
def _load_model(args, rank=0):
    if 'load_epoch' not in args or args.load_epoch is None:
        return (None, None, None)
    assert args.model_prefix is not None
    model_prefix = args.model_prefix
    if rank > 0 and os.path.exists("%s-%d-symbol.json" % (model_prefix, rank)):
        model_prefix += "-%d" % (rank)
    sym, arg_params, aux_params = mx.model.load_checkpoint(
        model_prefix, args.load_epoch)
    logging.info('Loaded model %s_%04d.params', model_prefix, args.load_epoch)
    return (sym, arg_params, aux_params)


#保存模型,需要你设置model_prefix这个参数。
def _save_model(args, rank=0):
    if args.model_prefix is None:
        return None
    dst_dir = os.path.dirname(args.model_prefix)
    if not os.path.isdir(dst_dir):
        os.mkdir(dst_dir)
    return mx.callback.do_checkpoint(args.model_prefix if rank == 0 else "%s-%d" % (
        args.model_prefix, rank))


#这部分主要是配置和训练相关的一些参数,里面的help字段是对该参数的解释,比较清晰了。
def add_fit_args(parser):
    """
    parser : argparse.ArgumentParser
    return a parser added with args required by fit
    """
    train = parser.add_argument_group('Training', 'model training')
    train.add_argument('--network', type=str,
                       help='the neural network to use')
    train.add_argument('--num-layers', type=int,
                       help='number of layers in the neural network, required by some networks such as resnet')
    train.add_argument('--gpus', type=str,
                       help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu')
    train.add_argument('--kv-store', type=str, default='device',
                       help='key-value store type')
    train.add_argument('--num-epochs', type=int, default=100,
                       help='max num of epochs')
    train.add_argument('--lr', type=float, default=0.1,
                       help='initial learning rate')
    train.add_argument('--lr-factor', type=float, default=0.1,
                       help='the ratio to reduce lr on each step')
    train.add_argument('--lr-step-epochs', type=str,
                       help='the epochs to reduce the lr, e.g. 30,60')
    train.add_argument('--optimizer', type=str, default='sgd',
                       help='the optimizer type')
    train.add_argument('--mom', type=float, default=0.9,
                       help='momentum for sgd')
    train.add_argument('--wd', type=float, default=0.0001,
                       help='weight decay for sgd')
    train.add_argument('--batch-size', type=int, default=128,
                       help='the batch size')
    train.add_argument('--disp-batches', type=int, default=20,
                       help='show progress for every n batches')
    train.add_argument('--model-prefix', type=str,
                       help='model prefix')
    parser.add_argument('--monitor', dest='monitor', type=int, default=0,
                        help='log network parameters every N iters if larger than 0')
    train.add_argument('--load-epoch', type=int,
                       help='load the model on an epoch using the model-load-prefix')
    train.add_argument('--top-k', type=int, default=0,
                       help='report the top-k accuracy. 0 means no report.')
    train.add_argument('--test-io', type=int, default=0,
                       help='1 means test reading speed without training')
    return train

def fit(args, network, data_loader, **kwargs):
    """
    train a model
    args : argparse returns
    network : the symbol definition of the nerual network
    data_loader : function that returns the train and val data iterators
    """
    # kvstore
# kvstore主要是解决你的梯度更新是在cpu进行还是gpu进行,这里主要调用kvstore.py脚本的create函数,
# 路径是~/mxnet/python/mxnet/kvstore.py。这里的kv_store默认是‘device’,表示在GPU上计算梯度和更新权重,
# 如果是要分布式训练,可以修改成’dist_device_sync‘。如果是在cpu上更新,那么kv_store就要设置为‘local’,
# 不过一般不会这么做,详细可以参考kvstore.py这个脚本。
    kv = mx.kvstore.create(args.kv_store)

    # logging
#这个主要是日志细节信息,可以参考另一篇博文:[MXNet的fine-tune.py源码详解]
    head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
    logging.basicConfig(level=logging.DEBUG, format=head)
    logging.info('start with arguments %s', args)

    # data iterators
# 数据导入主要在fine-tune.py脚本中调用data.py的get_rec_iter函数时候已经做好了,
# 所以这一部分做的就很少,而且test_io默认是0,那个if语句也就进不去了。
    (train, val) = data_loader(args, kv)
    if args.test_io:
        tic = time.time()
        for i, batch in enumerate(train):
            for j in batch.data:
                j.wait_to_read()
            if (i+1) % args.disp_batches == 0:
                logging.info('Batch [%d]\tSpeed: %.2f samples/sec' % (
                    i, args.disp_batches*args.batch_size/(time.time()-tic)))
                tic = time.time()

        return

    # load model
#导入模型参数已经在fine-tune.py中做好了,这里就是简单地一个赋值。当然如果你之前导入模型没做好,这个还有个else可以导入。
    if 'arg_params' in kwargs and 'aux_params' in kwargs:
        arg_params = kwargs['arg_params']
        aux_params = kwargs['aux_params']
    else:
        sym, arg_params, aux_params = _load_model(args, kv.rank)
        if sym is not None:
            assert sym.tojson() == network.tojson()

    # save model
# 保存模型就是你训练结束后生成的.param文件,跳到前面的_save_model函数
    checkpoint = _save_model(args, kv.rank)

    # devices for training
#设置在cpu还是gpu上训练,因为默认的gpus参数没有值,所以你如果要在gpu上训练,需要在启动训练的时候加上类似--gpus 0这样的参数。
    devs = mx.cpu() if args.gpus is None or args.gpus is '' else [
        mx.gpu(int(i)) for i in args.gpus.split(',')]

    # learning rate
#关于学习率的改变
    lr, lr_scheduler = _get_lr_scheduler(args, kv)

    # create model
# 这一步比较重要,通过mx.mod.Module函数生成model对象,注意这里的symbol就是网络结构,用fit函数的输入之一network赋值。
# 如果你需要在训练的时候固定一些层的参数不更新,只更新部分层的参数,那么可以在生成这个model对象的时候加上
# 类似fixed_param_names = [‘layer_name1’,‘layer_name2’]这样的参数,表示这两个参数不参与更新。
    model = mx.mod.Module(
        context       = devs,
        symbol        = network
    )

    lr_scheduler  = lr_scheduler
    optimizer_params = {
            'learning_rate': lr,
            'momentum' : args.mom,
            'wd' : args.wd,
            'lr_scheduler': lr_scheduler,
            'multi_precision': True}


# monitor参数可以用于设置迭代多少次就显示下网络的参数情况
    monitor = mx.mon.Monitor(args.monitor, pattern=".*") if args.monitor > 0 else None


# 这一部分主要是参数的初始化,可以看到随机初始化主要采用gaussion,不过现在一般都采用fine-tune,
# 即用别人的模型的参数来初始化你的模型,随机初始化用的并不多了。
    if args.network == 'alexnet':
        # AlexNet will not converge using Xavier
        initializer = mx.init.Normal()
    else:
        initializer = mx.init.Xavier(
            rnd_type='gaussian', factor_type="in", magnitude=2)
    # initializer   = mx.init.Xavier(factor_type="in", magnitude=2.34),


# 评价标准,默认采用准确率,top_k是表示预测的类别概率最高的前k个包含真实概率即算预测正确,常见ImageNet比赛的top_5。
    # evaluation metrices
    eval_metrics = ['accuracy']
    if args.top_k > 0:
        eval_metrics.append(mx.metric.create('top_k_accuracy', top_k=args.top_k))

    # callbacks that run after each batch
# 这个batch_end_callbacks简单讲就是显示训练到第几个epoch了,第几个batch了以及训练速度等信息。
# 这里的dis_batches参数就是你在训练界面看到的多少batch后显示结果,默认是20。
    batch_end_callbacks = [mx.callback.Speedometer(args.batch_size, args.disp_batches)]
    if 'batch_end_callback' in kwargs:
        cbs = kwargs['batch_end_callback']
        batch_end_callbacks += cbs if isinstance(cbs, list) else [cbs]

    # run
# 最后是最重要的训练启动入口,这个model.fit()表示调用model对象的fit函数,
# 这个model对象是前面create model时候通过mx.mod.Module生成的,详细可以查看~/mxnet/python/mxnet/model.py脚本,
# 里面包含最重要的fit()函数,下一篇博客细讲这个函数。
    model.fit(train,
        begin_epoch        = args.load_epoch if args.load_epoch else 0,
        num_epoch          = args.num_epochs,
        eval_data          = val,
        eval_metric        = eval_metrics,
        kvstore            = kv,
        optimizer          = args.optimizer,
        optimizer_params   = optimizer_params,
        initializer        = initializer,
        arg_params         = arg_params,
        aux_params         = aux_params,
        batch_end_callback = batch_end_callbacks,
        epoch_end_callback = checkpoint,
        allow_missing      = True,
        monitor            = monitor)

参考blog

阅读更多

没有更多推荐了,返回首页