Leetcode740.删除并获得最大点数

这篇博客讲解了如何使用动态规划解决一个关于整数数组的问题,通过删除元素并根据规则累积点数,找到能够获得的最大点数。通过示例和代码实现,深入理解如何将删除操作转化为动态规划状态转移方程dp[i]=max(nums[i]+dp[i-2],dp[i-1])。
摘要由CSDN通过智能技术生成

740. 删除并获得点数

给你一个整数数组 nums ,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。
开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

Sample1

输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。

Sample2

输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。

Notice

1 <= nums.length <= 2 * 10^4
1 <= nums[i] <= 10^4

这里删除一个点数N就获得一个点数N,同时要去掉点数为N-1和 N + 1 的点数,如果把每个点数的和放到一个长度N+1 数组中,这里就是一个动态规划中的单列问题。
由此有,

dp[i] =  max(nums[i] + dp[i - 2], dp[i - 1])

则数列中最大的和为dp[N]

class Solution {
public:
    int deleteAndEarn(vector<int>& nums) {
        if (nums.size() == 1) {
            return nums[0];
        }
        int max = *max_element(nums.begin(), nums.end());
        vector<int> numbers(max + 1, 0);
        for (int i = 0; i < nums.size(); i++) {
            numbers[nums[i]] += nums[i];
        }
        return GetMaxSum(numbers);
    }
private:
    int GetMaxSum(const vector<int>& nums)
    {
        vector<int> temp(nums.size(), 0);
        temp[0] = nums[0];
        temp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            temp[i] = max(nums[i] + temp[i - 2], temp[i - 1]);
        }
        return temp.back();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值