原理:
归并排序也是采用分治法,它将待排序序列分为若干个子序列,先使每个子序列有序,然后再将已有有序子序列合并为整体有序序列。
算法分为两步:递归和合并
(1)、递归:先把待排序数组以中点二分,接着把左边子数组继续二分,再把右边子数组继续二分,直到数组长度小于等于1,最后把左子数组和右子数组合并为有序的区间,合并步骤见(2)。
(2)、合并:比较左子数组a[i]和右子数组b[j]的元素,若a[i]
代码:
def MergeSort(Seq):
if len(Seq) <= 1:
return Seq
mid = int(len(Seq)/2)
left = MergeSort(Seq[:mid])
right = MergeSort(Seq[mid:])
return Merge(left, right)
def Merge(left, right):
result = []
i,j = 0,0
while i<len(left) and j<len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
# n = [4,12,7,9,1]
n = [1,-2,4]
n_sort = MergeSort(n)
print(n_sort)
优点:
一般用于总体无序,但各子项相对有序的数列效果较好,为稳定排序算法。
缺点:
归并排序中的合并操作花费的时间较大,影响整体算法的效率,尤其在大数据数组情况下。
复杂度:
时间复杂度为O(nlogn);空间复杂度为O(n)