原理:
堆排序是指利用堆(最大堆、最小堆)这种数据结构所设计的一种排序算法。其中堆是一种完全二叉树的结构,并满足子结点的键值或索引总是小于(或者大于)它的父结点。
用最大堆排序的基本思想:堆排序从最大堆的顶部不断取走堆顶元素放到有序序列中,直到堆的元素被全部取完。
算法过程:
(1)、建堆:从len/2到第一个节点0处一直调用调整堆的过程,其中len为数组长度,len/2表示节点深度。
(2)、调整堆:比较节点i和它的孩子节点left(i),right(i),选出三者最大者,如果最大值不是节点i而是它的一个孩子节点,那便交换节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作。
(3)、堆排序:主要利用上面两个过程进行。首先是根据元素构建堆,然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。
代码:
def BuildHeap(seq):
length = len(seq)
for i in range(0, int((length / 2)))[::-1]:
AdjustHeap(seq, i, length)
def AdjustHeap(seq, root, length):
lchild = 2 * root + 1
rchild = 2 * root + 2
rootmax = root
if lchild < length and seq[lchild] > seq[rootmax]:
rootmax = lchild
if rchild < length and seq[rchild] > seq[rootmax]:
rootmax = rchild
if rootmax != root:# 如果做了堆调整,则rootmax的值等于左节点或者右节点的,进行对调值操作
seq[rootmax], seq[root] = seq[root], seq[rootmax]
AdjustHeap(seq, rootmax, length)
def HeapSort(seq):
length = len(seq)
BuildHeap(seq)#建立初始堆
for i in range(0, length)[::-1]:
seq[0], seq[i] = seq[i], seq[0]#将根节点取出与最后一位做对调
AdjustHeap(seq, 0, i)#对前面len-1个节点继续进行堆调整过程
return seq
if __name__ == "__main__":
l = [2, 1]
print(l)
HeapSort(l)
print(l)
其中,[::-1]第一个参数表示起始点包括起始点,第二个参数表示结束点但不包括结束点,最后一个参数如果为负的话,需要保证第一个参数大于第二个参数,表示依次递减逆序,否则会输出空列表。
优点:
只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件有序。
缺点:
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
复杂度:
时间复杂度为O(nlogn),空间复杂度为O(1),是一种不稳定的排序算法。
(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素时,排序前和排序后他们的相对位置不发生变化。)
(建堆的时间复杂度是O(n),调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn) )