python:一种点击plot散点图获取选中数据点坐标的方法

0,引言

在利用python的matplotlib.pyplot绘制的散点图中,我们可以将鼠标移动到任意位置,图像中会自动显示当前鼠标所在带你的坐标,但是我们无法准确的获取到散点图中某一个数据点的准确坐标。本文将介绍一种基于欧氏距离的获取散点图中鼠标选中点的准确数据坐标的方法,并将介绍距离阈值的确定方法。本方法属笔者在解决实际问题的过程中探索结果,如有不妥,请大神指正!

1,环境配置

(1)PyCharm Edition(下载地址:http://www.jetbrains.com/pycharm/

(2)matplotlib(下载地址:https://pypi.org/project/matplotlib/

2,源代码

(1)先获取鼠标点击的位置坐标,计算该位置坐标跟散点图中所有数据点的欧式距离,找到距离的最小值对应的数据点即为鼠标选中的点。但是在这个过程中可能会出现鼠标点击空白处依然有选中数据点的情况,为了解决这个问题,我们需要先设计距离阈值(一般为数据的直径长度),当最小距离小于阈值,则采纳该点,否则放弃采纳,即本次点击不合法。

(2)源代码

def get_inflectionPoint_button0(self):
        '''
        获取拐点
        :return:
        '''
        if self.mainWindow_lineEdit0_text == "":
            QMessageBox.warning(self, "警告!", "请选择源文件!", QMessageBox.Cancel)
            return
        if self.mainWindow_lineEdit1_text == "":
            QMessageBox.warning(self, "警告!", "请提取数据!", QMessageBox.Cancel)
            return
        if len(path_separate_line_file_name) <= 0:
            QMessageBox.warning(self, "警告!", "请提取数据!", QMessageBox.Cancel)
            return
        if len(path_separate_line_file_name) > 0:
            data_list_SJ = pd.read_excel(path_separate_line_file_name)['Time']
            data_list_YB = pd.read_excel(path_separate_line_file_name)['Ea - Axial Strain']
            data_list_YL = pd.read_excel(path_separate_line_file_name)['Sd - Deviator Stress']

            data_list_Axial_Load = pd.read_excel(path_separate_line_file_name)['Axial Load']
            data_list_Axial_Def1 = pd.read_excel(path_separate_line_file_name)['Axial Def. 1']
            data_list_Axial_Def2 = pd.read_excel(path_separate_line_file_name)['Axial def.2']
            data_list_circumferce_def = pd.read_excel(path_separate_line_file_name)['circumferce def ']
            data_list_Avg_Axial_Def = pd.read_excel(path_separate_line_file_name)['Avg. Axial Def.']

            data_list_YBC = []
            for i in range(len(data_list_YB)):
                if i == 0:
                    data_list_YBC.append(0)
                else:
                    data_list_YBC.append(float(data_list_YB[i] - data_list_YB[i - 1]))
            # 删除第一行元素
            data_list_SJ = np.array(data_list_SJ[1:])
            data_list_YBC = np.array(data_list_YBC[1:])

            # 绘图
            plt.close('all')
            mpl.rcParams['font.sans-serif']=['SimHei'] #指定默认字体 SimHei为黑体
            mpl.rcParams['axes.unicode_minus']=False #用来正常显示负号
            plt.scatter(data_list_SJ,data_list_YBC,s=20, c="#ff1212", marker='.')
            plt.xlim(0,)
            plt.ylim(0,)
            plt.xlabel(u"时间(s)") #X轴标签
            plt.ylabel("轴向应变差(%)") #Y轴标签
            # plt.title("Sd - Deviator Stress(%)") #标题
            clicked_point = plt.ginput(1)
            print("clicked", clicked_point)
            plt.show()

            if len(clicked_point) == 0:
                QMessageBox.warning(self, "警告!", "请在坐标系内选点!", QMessageBox.Cancel)
                return
            distance_list = []
            for i in range(len(data_list_SJ)):
                distance_list.append(self.compute_distance([clicked_point[0][0],clicked_point[0][1] * 25000],[data_list_SJ[i],data_list_YBC[i] * 25000]))
            print(float(min(distance_list)))
            if float(min(distance_list)) > 200.0:
                QMessageBox.warning(self, "警告!", "您选择的点距离真实数据太远!", QMessageBox.Cancel)
                return
            min_distance_index = distance_list.index(min(distance_list))

            global inflectionPoint_index1
            inflectionPoint_index1 = min_distance_index + 1

            slope_SJ = data_list_SJ[min_distance_index]
            slope_YBC = '%.4f'%data_list_YBC[min_distance_index]

            label_text = str(slope_SJ) + ':' + str(slope_YBC)
            self.lineEdit0.setText(label_text)

            self.lineEdit5_0_0.setText(str(data_list_Axial_Load[inflectionPoint_index1]))
            self.lineEdit5_0_1.setText(str(data_list_Axial_Def1[inflectionPoint_index1]))
            self.lineEdit5_0_2.setText(str(data_list_Axial_Def2[inflectionPoint_index1]))
            self.lineEdit5_0_3.setText(str(data_list_circumferce_def[inflectionPoint_index1]))
            self.lineEdit5_0_4.setText(str(data_list_Avg_Axial_Def[inflectionPoint_index1]))

            # print(data_list_YL)
            data_list_YL = np.array(data_list_YL).tolist()
            data_list_SJ = np.array(data_list_SJ).tolist()
            # print(data_list_YL)
            # print(data_list_SJ.index(slope_SJ))
            global slope_YL1
            slope_YL1 = data_list_YL[data_list_SJ.index(slope_SJ) + 1]
            # print(slope_YL1)
        else:
            return

(3)实验结果

 

3,总结

在鼠标点击获取数据点坐标的这个过程中,得到鼠标点击位置的坐标是关键,另外,关于距离阈值的确定,有时候可能需要经验判断,该值不能太小,否则会造成选点困难的问题,也不能太大,否则会造成点击空白依然有效的情况(笔者建议把该值确定为数据点的直径大小)。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值