UVA-墓地雕塑

题目:在一个周长为10000的圆上等距分布着n个雕塑。现在又有m个新雕塑加入(位置可以随意放),希望所有n+m个雕塑在圆周上均匀分布。这就需要移动其中一些原有的雕塑。要求n个雕塑的移动的总距离尽量小。

题解:

周长为多少先不考虑,先用n+m算,之后再按比例扩大。用n+m算,既新雕塑加入后各个雕塑之间的距离为1,移动后的位置。移动前,选定一个雕塑为原点,那么每个雕塑的坐标就是 i*(n+m)/n 把每个雕塑移动到离它最近的整数坐标的位置,既移动完成后需要有雕塑的位置。

如果没有两个雕塑移动到相同的位置,那么这样的移动是最优的。

那么如何证明,不会存在有两个雕像移动到同一个地方呢。能移动到同一个地方的雕塑坐标距离会小于1,例如1.5与2.4999,它们会移动到2这个位置,但这是不可能的,因为,移动之前位置是等距分配的,而周长(n+m)除以移动之前的个数n,距离是大于1的,所以,不会存在有两个雕像移动到同一个地方。

代码:

#include<cstdio>
#include<cmath>
int main()
{
	int n,m;
	while(~scanf("%d%d",&n,&m))
	{
		double ans=0.0;
		int i;
		for(i=1;i<n;i++)
		{
			double pos=(double)i/n*(n+m);
			ans+=fabs(pos-floor(pos+0.5))/(n+m);
		}
		printf("%.4lf\n",ans*10000);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值