题目大意:给出一个数列,问其中存在多少连续子序列,子序列的最大值-最小值< k
这题有三种解法:
1:单调队列,时间复杂度O(n)
2:RMQ+二分,时间复杂度O(nlogn)
3:RMQ+贪心,时间复杂度O(nlogn)
一:RMQ+二分
RMQ维护最大值,最小值,枚举左端点i,二分找出最远的符合的右端点j,答案就是ans += j - i+1;(手推一下就知道)
比如1 2 3
含有i的有三种
1
1 2
1 2 3
其它的2,2 3,3下面i=2的时候会算的,所以每次加j-i+1就行
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
int maxsum[100000][30];
int minsum[100000][30];
int a[100000];
int n,k;
void rmq_init()
{
for(int j = 1; (1<<j) <= n; ++j)
for(int i = 1; i + (1<<j) - 1 <= n; ++i)
{
maxsum[i][j] = max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
minsum[i][j] = min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
}
}
int query(int l, int r)
{
int k = log2(r-l+1);
int Max = max(maxsum[l][k], maxsum[r-(1<<k)+1][k]);
int Min = min(minsum[l][k], minsum[r-(1<<k)+1][k]);
return Max - Min;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(int i = 1; i <= n;++i)
{
scanf("%d",a+i);
maxsum[i][0] = minsum[i][0] = a[i];
}
rmq_init();
long long ans = 0;
int l , r;
for(int i = 1; i <= n; ++i)
{
l = i , r = n;
while(l <= r)
{
int mid = (l+r)/2;
int cha = query(i,mid);
if(cha < k) l = mid+1;
else r = mid - 1;
}
ans += l - i;
}
printf("%lld\n",ans);
}
return 0;
}
二:单调队列
用单调队列维护最大值最小值,双指针,第一个第二个指针初始指向第一个数据,第一个指针按顺序不断向队尾添加数据,当最大值最小值的差大于等于k后,就意味着新添加的这个不能作用于当前第二个指针的位置,也就能计算出,以第二个指针位置开始的连续子序列的个数,最后统计总和。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std ;
#define LL long long
deque <LL> Max , Min ;
//单调队列,Max最大值,Min最小值
LL a[100010] ;
int main()
{
int T , n , i , j ;
LL k , ans ;
scanf("%d", &T) ;
while( T-- )
{
scanf("%d %I64d", &n, &k) ;
for(i = 0 ; i < n ; i++)
scanf("%I64d", &a[i]) ;
while( !Max.empty() ) Max.pop_back() ;
while( !Min.empty() ) Min.pop_back() ;
for(i = 0 , j = 0 , ans = 0; i < n ; i++) //i在前,j在后
{
while( !Max.empty() && Max.back() < a[i] ) Max.pop_back() ;
Max.push_back(a[i]) ;
while( !Min.empty() && Min.back() > a[i] ) Min.pop_back() ;
Min.push_back(a[i]) ;
while( !Max.empty() && !Min.empty() && Max.front() - Min.front() >= k )
{
ans += (i-j) ;
if( Max.front() == a[j] ) Max.pop_front() ;
if( Min.front() == a[j] ) Min.pop_front() ;
j++ ;
}
}
while( j < n )
{
ans += (i-j) ;
j++ ;
}
printf("%lld\n", ans) ;
}
return 0 ;
}
三:RMQ+贪心
这种枚举右端点,贪心选取右端点(类似尺取法)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
int maxsum[100000][30];
int minsum[100000][30];
int a[100000];
int n,m;
void rmq_init()
{
for(int j = 1; (1<<j) <= n; ++j)
for(int i = 1; i + (1<<j) - 1 <= n; ++i)
{
maxsum[i][j] = max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
minsum[i][j] = min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
}
}
int query(int l, int r)
{
int k = log2(r-l+1);
int Max = max(maxsum[l][k], maxsum[r-(1<<k)+1][k]);
int Min = min(minsum[l][k], minsum[r-(1<<k)+1][k]);
return Max - Min;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; ++i)
{
scanf("%d",a+i);
maxsum[i][0] = minsum[i][0] = a[i];
}
rmq_init();
long long ans = 0;
int k=1;
for(int i=1; i<=n; i++)
{
while(query(k,i)>=m&&k<i)k++;
ans+=(i-k+1);
}
printf("%lld\n",ans);
}
return 0;
}
下面分别是三种算法运行时间(3,2,1)
可见时间效率单调队列最好(405ms),贪心+rmq(733ms)次之,二分+rmq(1216ms)最差