History Grading -uva

这个题据说是动归、、、不过我没学过啊,反正最后给AC了。。。。无所谓了

方法效率可能差点,下面是我的代码

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define MAX_SIZE 100000 + 5
int main(){
    int n;
    int array[MAX_SIZE];
    scanf("%d",&n);
    memset(array,0,sizeof(array));
    for(int i=1;i<=n;i++){
        int t;
        scanf("%d",&t);
        array[i]=t;
    }
    /*array[t]=i´ú±ítÅŵÚi*/
    int arr[MAX_SIZE];
    int t;
    while(scanf("%d",&t)!=EOF){
        arr[t]=1;
        for(int i=2;i<=n;i++){
            scanf("%d",&t);
            arr[t]=i;
        }
        int max_size = 1;
        for(int i=1;i<=n;i++){
            if(n+1-i<=max_size) break;
            int counts[MAX_SIZE]={0};
            int temp[MAX_SIZE];
            int top=1;
            counts[0]=1;
            temp[0]=arr[i];
            for(int j=i+1;j<=n;j++){
                    for(int k=0;k<top;k++){
                        max_size=max_size>counts[k]?max_size:counts[k];
                        if(array[temp[k]]<array[arr[j]]){
                            counts[top]=counts[k]+1;
                            temp  [top]=arr[j];
                            top++;
                        }
                    }
            }
        }
        printf("%d\n",max_size);
    }
    return 0;
}
下面是网上的代码
#include <stdio.h>
#include <string.h>
#define MAX 100
#define max(a,b) (a) > (b) ? (a) : (b)


int ans,dp[MAX][MAX];
int n,arr[MAX],brr[MAX];


int main()
{
	int i,j,k;


	scanf("%d",&n);
	for (i = 1; i <= n; ++i)
		scanf("%d",&k),arr[k] = i;


	while (scanf("%d",&k) != EOF) {

		ans = 0,brr[k] = 1;
		for (i = 2; i <= n; ++i)
			scanf("%d",&k),brr[k] = i;

		
		memset(dp,-1,sizeof(dp));
		for (i = 0; i <= n; ++i)
			dp[0][i] = dp[i][0] = 0;
		for (i = 1; i <= n; ++i)
			for (j = 1; j <= n; ++j) {

				if (arr[i] == brr[j])
					 dp[i][j] = max(dp[i][j],dp[i-1][j-1]+1);
				else dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
				ans = max(dp[i][j],ans);	
			}


		printf("%d\n",ans);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值