【UVA】10285-Longest Run on a Snowboard(动态规划)

这题出简单了,不需要打印路径。

状态方程dp[i][j] = max(dp[i-1][j],dp[i][j-1],dp[i+1][j],dp[i][j+1]);

14003395 10285 Longest Run on a Snowboard Accepted C++ 0.026 2014-08-07 11:43:51

枚举每个点进行遍历,使用记忆化搜索。要不会超时。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<list>
#include<string>
#include<sstream>
#include<ctime>
using namespace std;
#define _PI acos(-1.0)
#define INF (1 << 10)
#define esp 1e-6
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> pill;
/*===========================================
===========================================*/
#define MAXD 100 + 10
char name[MAXD];
int m,n,ans;
int dp[MAXD][MAXD];
int mat[MAXD][MAXD];
int dir[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};
int DP(int x,int y){
    if(dp[x][y] != -1)
        return dp[x][y];
    dp[x][y] = 1;
    for(int i = 0 ; i < 4 ; i++){
        int _x = dir[i][0] + x;
        int _y = dir[i][1] + y;
        if(_x >= 0 && _y >=0 && _x < n && _y < m && mat[x][y] < mat[_x][_y]){
            dp[x][y] = max(dp[x][y],DP(_x,_y) + 1);
        }
    }
    ans = max(ans,dp[x][y]);
    return dp[x][y];
}
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%s%d%d",name,&n,&m);
        int pos_x,pos_y;
        int MIN = INF;
        memset(dp,-1,sizeof(dp));
        for(int i = 0 ; i < n ; i++)
            for(int j = 0 ; j < m ; j++){
                scanf("%d",&mat[i][j]);
                if(mat[i][j] < MIN){
                    MIN = mat[i][j];
                    pos_x = i;
                    pos_y = j;
                }
            }
        ans = 0;
        for(int i = 0 ; i < n ; i++)
            for(int j = 0 ; j < m ; j++)
                DP(i,j);
        printf("%s: %d\n",name,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值