稀疏表示(Sparse Representation)_Elad' slide


(2011-01-06 19:14:24)

    2011年已过去近一周,闲来无事去一些大牛的主页逛了逛。在M. Elad的主页有不少收获,他的关于稀疏表示的新书以及Matlab代码都可以在那下载到,感兴趣的同学可以去那里看看http://www.cs.technion.ac.il/~elad/

(More relations can be found in my homepage http://home.ustc.edu.cn/~roy/Relation.html)

    《sparse representation......》书我已看过,这周下了一些Elad 2010几场报告的ppt,粗略地看了一遍,有几张ppt感觉很有意思,特意贴出来与大家分享。

 

对于一个求解问题,一般都会假设信号具有一定的先验信息,这张slide很幽默地说明了图像先验的变迁

稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 

 

对于这几年比较热的压缩感知CS理论,一个比较热的研究是其重建算法,这张slide说明了lp-norm的直观特性
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 

原来求解同一个逆问题可以定义不同的目标函数,他们之间有区别吗?
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 


Spark是Donoho和Elad首先定义的,这张slide可以帮助理解
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 

对于一个“多项式”目标函数,可以采用逐步求解的方式解答,很有借鉴价值
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 

牛人们的庐山真面目(Donoho膜拜O(∩_∩)O~)
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

 

Elad的新书,推荐!!
稀疏表示(Sparse <wbr>Representation)_Elad' <wbr>slide

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值