六度分离
Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
const int inf = 9999999;
using namespace std;
int map[500][500];
int dis[500][500];
int n,m;
void Floyd()
{
// printf ("\n");
// int flag = 1;
// for (int i=0; i<n; i++)
// {
// for (int j=0; j<n; j++)
// printf ("%d ",dis[i][j]);
// printf ("\n");
// }
for(int k = 0; k<n; k++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<n; j++)
{
if(dis[i][k] != inf && dis[k][j] != inf && dis[i][j] > dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
}
}
}
}
int main()
{
int a,b;
while(~scanf("%d%d",&n,&m))
{
memset(map,0,sizeof(map));
memset(dis,0,sizeof(dis));
for(int i = 0; i<m; i++)
{
scanf("%d%d",&a,&b);
map[a][b] = map[b][a] = 1;
}
for (int i=0; i<n; i++)
{
for (int j=0; j<n; j++)
{
if (map[i][j] == 1)
dis[i][j] =1;
else dis[i][j] =inf;
}
dis[i][i] =0;
}
Floyd();
// printf ("\n");
// for (int i=0; i<n; i++)
// {
// for (int j=0; j<n; j++)
// printf ("%d ",dis[i][j]);
// printf ("\n");
// }
int flag = 1;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(dis[i][j] > 7)
{
flag = 0;
break;
}
}
if(flag==0)
break;
}
if(flag) printf ("Yes\n");
else printf ("No\n");
}
return 0;
}