特征提取与检测2-Shi-Tomasi角点检测

87 篇文章 8 订阅 ¥299.90 ¥399.90
14 篇文章 1 订阅 ¥99.90 ¥299.90
本文深入探讨了Shi-Tomasi角点检测算法在计算机视觉中的应用,详细解析了其原理和实现过程,通过OpenCV库展示了如何进行特征角点的检测。此算法对于图像处理和物体识别具有重要意义。
摘要由CSDN通过智能技术生成

Shi-Tomasi角点检测原理:

    Shi-Tomasi算法是对Harris角点检测算法的改进,一般会比Harris算法得到更好的角点,Harris算法的角点响应函数是将矩阵M的行列式值与M的积相减,利用差值判断是否为角点,后来Shi和Tomasi提出改进的方法是,若矩阵M的两个特征值中较小的一个大于阈值,则认为它是角点,即:
如下图所示
从这幅图中,可以看出只有当λ1和λ2都大于最小值时,才被认为是角点
void cv::goodFeaturesToTrack
(
    InputArray image,
    OutputArray corners,
    int maxCorners,
    double q
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qt学视觉

你的鼓励将是我创作的最大动力、

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值