-
题目描述:
-
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并输出它的后序遍历序列。
-
输入:
-
输入可能包含多个测试样例,对于每个测试案例,
输入的第一行为一个整数n(1<=n<=1000):代表二叉树的节点个数。
输入的第二行包括n个整数(其中每个元素a的范围为(1<=a<=1000)):代表二叉树的前序遍历序列。
输入的第三行包括n个整数(其中每个元素a的范围为(1<=a<=1000)):代表二叉树的中序遍历序列。
-
输出:
-
对应每个测试案例,输出一行:
如果题目中所给的前序和中序遍历序列能构成一棵二叉树,则输出n个整数,代表二叉树的后序遍历序列,每个元素后面都有空格。
如果题目中所给的前序和中序遍历序列不能构成一棵二叉树,则输出”No”。
-
样例输入:
-
-
样例输入:
-
8 1 2 4 7 3 5 6 8 4 7 2 1 5 3 8 6 8 1 2 4 7 3 5 6 8 4 1 2 7 5 3 8 6
-
样例输出:
-
7 4 2 5 8 6 3 1 No
#include <string.h> #include <stdio.h> #include <stdlib.h> #include <queue> #include <iostream> #include <fstream> using namespace std; bool flag; int cmp(const void*a,const void *b) { int *p1=(int *)a,*p2=(int *)b; if(*p1>*p2)return 1; else{return -1;} } int search(int *p,int b,int n) { for(int i=0;i<n;i++) { if(p[i]==b)return i; } return -1; } bool the_same(int p1[1005],int p2[1005],int n) { for(int i=0;i<n;i++) { if(p1[i]!=p2[i]){cout<<"as";return false;} } return true; } void find(int n,int *front,int *middle) { //n==1输出, n==0,return int temp1[1005],temp2[1005]; for(int i=0;i<n;i++){temp1[i]=front[i];temp2[i]=middle[i];} qsort(temp1,n,sizeof(int),cmp); qsort(temp2,n,sizeof(int),cmp); for(int i=0;i<n;i++) { if(temp1[i]!=temp2[i]){flag=false;return;} } if(n<=0)return; //排序。 int p=search(middle,front[0],n); find(p,front+1,middle);//核心 find(n-1-p,front+1+p,middle+p+1);//核心 if(flag==true){cout<<front[0]<<" ";}//输出 } int main() { int n; int s1[1005],s2[1005]; while(cin>>n) { flag=true; for(int i=0;i<n;i++)cin>>s1[i]; for(int i=0;i<n;i++)cin>>s2[i]; find(n,s1,s2); if(flag==false)cout<<"No"; cout<<endl; } }
-