HashMap是基于哈希表实现的,每一个元素是一个key-value对。
目录
- 数据结构
- 存储形式
- 初始化
- 扩容
- 查找操作
- 插入操作
- 删除操作
数据结构
首先,每个元素都有一个hash值,我们看看hash值是如何生成的:
/**
* 将key的哈希值无符号右移16位与低16位的亦或运算。
* 作用:如果key数量较少,高16位的哈希值基本固定不变。将高16位
* 的哈希值也参与运算,使哈希值分布更均匀,减少hash碰撞
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
原理具体分析见:HashMap源码注解 之 静态工具方法hash()、tableSizeFor()(四)
存储形式
HashMap的数据结构采用数组+单链表+红黑树的形式(jdk1.8中增加了红黑树,当链表长度不小于阈值(8)时,将单链表转换为红黑树,这样大大减少了查找时间。小于8时转回为单链表)
下图很好地展示了HashMap的数据结构,桶的形式分为单链表和红黑树两种结构。
——>接着,我们看看每种结构对应的具体实现:
单链表
/**
* 单链表中的每个节点
*/
static class Node<K,V> implements Map.Entry<K,V> {
//哈希值
final int hash;
//键
final K key;
//值
V value;
//下个节点
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
红黑树
/*
*红黑树中的每个元素及操作方法(省略)
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
。。。。
}
由于红黑树涉及到的问题比较多(节点的数据结构,如何插入节点,如何删除节点),不在此详细阐述,可以参考如下资料:
本质上,红黑树就是一颗2-3-4数(B树的一种),插入、删除节点时以2-3-4树的方式考虑就简单多了。
数组(哈希表)
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
Node[] table,即哈希桶数组。但是要注意数组的大小:
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;
并且数组的大小(size)只能是2的幂次方。
——>为什么容量只能是2次幂的形式?
当我们想要找到元素在表中的位置时,需要先对hash值取余数,即hash%n,n代表table的capacity。
源码中通过**(n-1)&hash**的方式,因为&运算的效率高于%运算。
这样数组的长度就必须是2的幕次方,才能等价于hash%n。
初始化
即构造函数,主要需要明确容量和加载因子
- 阈值 = 容量 * 加载因子
- loadFactor = capacity * loadFactor
最主要的构造函数:
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
//容量合法性检查
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//加载因子合法性检查
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
//tableSizeFor()方法是将容量转化为大于其容量的最小2次幂形式
//注意,初始化时直接将容量赋值到阈值:table的初始化被推迟到了put方法中,
//在put方法中会对threshold重新计算,put方法后面具体分析
this.threshold = tableSizeFor(initialCapacity);
}
我们在看看tableSizeFor(initialCapacity)方法:将容量转化为大于等于其容量的最小2次幂形式。
/**
* 找到大于等于initialCapacity的最小的2的幂
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
原理具体分析见:HashMap源码注解 之 静态工具方法hash()、tableSizeFor()(四)
扩容
在每次插入元素的时候都需要检查下map的容量,若小于阈值,则需要扩容。
扩容函数 resize()会遇到三种情况:
- table已初始化有元素——>扩容2倍,更新阈值,复制元素到新table
- table未初始化,但是阈值已确定(有参构造器)——>容量等于阈值,再更新阈值
- table未初始化,阈值也未确定(无参构造器)——>初始容量默认16,更新阈值
注意,在将所有元素复制到新的table(新的capacity)时,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”
- 详细分析参见:JAVA源码分析-HashMap源码分析(二)
——>具体源码:
//大前提:capacity都是2次幂形式,扩容到两倍
//(1)table已有元素
//(2)table未初始化,但是阈值已确定
//(3)若table未初始化,阈值也未确定
//————>最终得到:扩容/或默认容量,初始化table,更新阈值
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//(1)table已有元素——>新容量和阈值扩大到2倍
if (oldCap > 0) {
//若旧容量超过最大值
if (oldCap >= MAXIMUM_CAPACITY) {
//阈值设置最大值
threshold = Integer.MAX_VALUE;
return oldTab;
}
//若旧容量超过16,但新容量(扩大到2倍)小于最大值
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//阈值扩大到2倍
newThr = oldThr << 1; // double threshold
}
//(2)若table未初始化,但是阈值已确定——>新容量等于构造时的阈值——>
//调整新阈值threshold = capacity * loadFactor——>初始化table,但size为0
//(这种情况出现在:在构造函数中已确定了阈值,在putVal函数(put()插入一个元素、putMapEntries()插入map集等会调用putVal)
//插入元素时调用resize扩容函数)
else if (oldThr > 0) // initial capacity was placed in threshold
/**
* 为什么newCap直接等于oldThr,而不是oldThr/loadFactor?
*
* 虽然规定threshold = capacity * loadFactor
* 但在构造函数中直接赋值threshold = capacity
* 所以newCap无需调整
*
*/
newCap = oldThr;
//(3)若table未初始化,阈值也未确定——>初始新容量和阈值——>初始化table,但size为0
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
//注意这里的threshold = capacity * loadFactor
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//情况(2)中,将旧阈值threshold = capacity调整新阈值threshold = capacity * loadFactor
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更新阈值
threshold = newThr;
//初始化table
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//更新元素到新table
if (oldTab != null) {
//遍历旧table
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//遍历桶位中的每个元素
//首先检查桶中第一个元素
if ((e = oldTab[j]) != null) {
//gc
oldTab[j] = null;
//①如果桶中只有一个元素
if (e.next == null)
//新table的位置
newTab[e.hash & (newCap - 1)] = e;
//②如果桶中不止一个元素,且桶是红黑树的形式
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//③如果桶中不止一个元素,且桶是单链表的形式
else { // preserve order
//声明了队尾和队头指针。新索引标识(原索引+oldCap)为hi,原索引标识为lo
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//只需要看看原来的hash值新增的那个bit是1还是0就好了,
//是0的话索引没变,是1的话索引变成“原索引+oldCap”
//不需要对每个元素重新计算hash值
//
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
} // 新索引(原索引+oldCap)放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
查找操作
1、通过key查找元素:
-
public V get(Object key)
-
public boolean containsKey(Object key)
-
@Override public boolean replace(K key, V oldValue, V newValue)
-
。。。。
最终源码都会调用getNode()方法,通过元素的hash值找到桶的位置后,再检查桶(单链表或红黑树)中是否有元素。
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab;
Node<K,V> first, e;
int n; K k;
//①table已经初始化,②且长度大于0,③根据hash寻找到的table中桶也不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//检查桶中第一个元素
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//检查桶中剩余的元素
if ((e = first.next) != null) {
//如果桶是红黑树的形式
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//如果桶是单链表的形式
do {
//节点key的哈希值相同且节点key相同
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
2、通过value查找元素:
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
//遍历
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
插入操作
插入过程参见下图:
1、插入单个元素:
// 第三个参数 onlyIfAbsent 如果是 true,那么不能覆盖value(除非value为空)
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果table未初始化,或长度为0,则先扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果找到的桶位置,但为空,则直接新建节点(单链表形式)
if ((p = tab[i = (n - 1) & hash]) == null)
//尾指针为空
tab[i] = newNode(hash, key, value, null);
//否则查找待插入的元素在桶中是否存在
else {
//e为搜索到的节点
Node<K,V> e; K k;
//先查找桶中第一个节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果桶是红黑树的形式
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果桶是单链表的形式
else {
for (int binCount = 0; ; ++binCount) {
//(尾插法)如果未找到相同节点,即e=null,在最后插入
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果节点超过8,转化成红黑树形式
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果找到相同节点,保存到e
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//迭代下个节点
p = e;
}
}
//替换相同节点
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
//LinkedHashMap中被覆盖的afterNodeInsertion方法,用来回调移除最早放入Map的对象
afterNodeInsertion(evict);
return null;
}
2、插入元素集合:
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
//判断插入集合大小的有效性
if (s > 0) {
//如果table未初始化
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
//如果table已初始化,但是待插入map的大小直接超过阈值,则需要调整table的大小
//(注意是大小直接超过阈值,不是table剩余容量)
else if (s > threshold)
resize();
//正式将待插入map一个一个插入
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
删除操作
删除单个元素:
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
//e代表正在搜索的节点,p代表前个节点
Node<K,V>[] tab; Node<K,V> p; int n, index;
//table已经初始化,且长度大于0,根据索引找到的桶的位置不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
//保存搜索到的节点
Node<K,V> node = null, e; K k; V v;
//桶中第一个节点就是要寻找的节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
//搜索桶中剩余的节点
else if ((e = p.next) != null) {
//桶为红黑树的形式
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
//桶为单链表的形式
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//移除找到的节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//单链表中只有一个该节点
else if (node == p)
tab[index] = node.next;
//单链表中有多个节点
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
参考:
- JDK1.8 HashMap源码分析
- Java8系列之重新认识HashMap
- 【Java集合源码剖析】HashMap源码剖析(jdk1.6的源码,与jdk1.8不同)