HDU 3183 A Magic Lamp(贪心 or RMQ)

HDU 3183 A Magic Lamp(贪心  or RMQ

http://acm.hdu.edu.cn/showproblem.php?pid=3183

题意:

        Kiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so kind. Kiki must answer a question, and then the genie will realize one of her dreams. 
        The question is: give you an integer, you are allowed to delete exactly m digits. The left digits will form a new integer. You should make it minimum.
        You are not allowed to change the order of the digits. Now can you help Kiki to realize her dream?

分析:两种解法都很巧妙。

解法一:

        首先考虑对于n个数字组成的数,只删除1位的情况。

        比如176832,删除一位使得剩下的数值最小。结果是删除7而不是删除8所以可知并不总是删除最大的那个数字。

        一种可行的贪心策略是:对于n位数构成的数删除m位,每次总是删除这样的a[i]:它是第一个a[i]>a[i+1]的数,如果不存在则就删除a[n]如何证明给贪心策略是正确的呢?

        假设始终不删除a[i],那么最终m位数就必然包含a[i]。但其实a[i]>a[i+1],所以我们完全可以删除a[i],然后让a[i+1]在a[i]最终的位置上,那么得到的m位数自然更小了。所以a[i]必定要被删除的。以此类推,贪心得证。

解法二:

        现在用RMQ来解该题目。

        因为要找n-m个数,删除m个数。所以原数的第1位到m+1位的数字中最小的那位(假设是第i位)肯定是n-m位数的第一位。(想想为什么)

        这样我们就找到了第一位a[i],接下来我们在从第i+1位数到m+2位数中找最小的那位,这个肯定是n-m位数的第二位。

        以此类推,找够n-m位即可。

          RMQ函数要做点修改。dmin[i][j]=k表示的是区间[ii+(1<<j)-1]内最小值的下标而不是值了。

        具体看下面代码.

AC代码:15ms

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN=1000+100;
char a[MAXN];//初始字符数组
int ans[MAXN];//最后结果
int dmin[MAXN][20];
int minc(int i,int j)
{
    if(a[i]<=a[j])return i;
    return j;
}
void initMin(int n)
{
    for(int i=0; i<n; i++)dmin[i][0]=i;
    for(int j=1; (1<<j)<=n; j++)
        for(int i=0; i+(1<<j)-1<n; i++)
            dmin[i][j]=minc(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);
}
int getMin(int L,int R)
{
    int k=0;
    while((1<<(k+1))<=R-L+1)k++;
    return minc(dmin[L][k] , dmin[R-(1<<k)+1][k]);
}
int main()
{
    int m;
    while(scanf("%s%d",a,&m)==2)
    {
        int n=strlen(a);
        int p=-1;
        initMin(n);
        for(int i=1; i<=n-m; i++)
        {
            p=getMin(p+1,m+i-1);//最终结果n-m位数的 第i个数的位置
            ans[i]=a[p]-'0';//最终结果n-m位数的 第i个数的值
        }
        int i;
        for(i=1; i<=n-m; i++)if(ans[i]!=0)break;
        if(i>n-m)printf("0\n");
        else
        {
            for(; i<=n-m; i++)
            {
                printf("%d",ans[i]);
            }
            printf("\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值