HDU 3849 By Recognizing…(求无向图的桥数目)

HDU 3849 By Recognizing…(求无向图的桥数目)

http://acm.hdu.edu.cn/showproblem.php?pid=3849

题意:

      给你一个无向图(可能不连通,但是无自环,无重边),如果本图不连通,那么直接输出0。否则要你输出图中的每条桥边,要求按输入边的顺序输出。

分析:

       由于图可能不连通,所以我们只用tarjan(1,-1)即可。然后判断是否还有节点的pre值==0。如果存在这种点,那么该图不连通.

       输出每条桥不难,直接用刘汝佳训练指南的模板即可。但是本题要求按边的输入顺序输出桥,所以我们不能在dfs的过程中输出了。我们必须事后按顺序判断每条边是否是桥。

       如何在dfs事后,判断一条边是不是桥呢?

       对于边(u,v)来说,只要low[u]>pre[v] 或 low[v]>pre[u]那么(u,v)边一定是桥。

       (仔细想想这个结论)

       代码中我用map来实现一个字符串到点编号的映射,那么一个输入边就是由两个字符串节点node组成的了.我们先求完所有节点的low值.然后在退出tarjan()函数后,重新扫描每一条边的两个节点u和v的low和pre值,即可判断该边是否是桥。

AC代码:

#include<cstdio>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
const int maxn=10000+10;
const int maxm=100000+10;
int n,m;
struct node
{
    char s[20];
    bool operator <(const node& rhs)const
    {
        return strcmp(s,rhs.s)<0;
    }
};
map<node,int> mp;//将字符串node映射成节点编号
struct Edge
{
    node u,v;
    bool flag;//标记该边是不是桥
}e[maxm];
vector<int> G[maxn];
int pre[maxn],low[maxn];
int dfs_clock;
void tarjan(int u,int fa)
{
    low[u]=pre[u]=++dfs_clock;
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(v==fa) continue;
        if(!pre[v])
        {
            tarjan(v,u);
            low[u]=min(low[u],low[v]);
        }
        else low[u] = min(low[u],pre[v]);
    }
}
int main()
{
    int T; scanf("%d",&T);
    while(T--)
    {
        int id=0;
        scanf("%d%d",&n,&m);
        mp.clear();
        dfs_clock=0;
        memset(pre,0,sizeof(pre));
        for(int i=1;i<=n;i++) G[i].clear();
        for(int i=0;i<m;i++)
        {
            e[i].flag=false;
            scanf("%s%s",e[i].u.s,e[i].v.s);
            if(mp.find(e[i].u)==mp.end()) mp[e[i].u]= ++id;
            if(mp.find(e[i].v)==mp.end()) mp[e[i].v]= ++id;
            int x = mp[e[i].u], y=mp[e[i].v];
            G[x].push_back(y);
            G[y].push_back(x);
        }
        tarjan(1,-1);
        bool ok=true;//判断是否连通图
        for(int i=1;i<=n;i++)if(!pre[i])
        {
            ok=false;
            break;
        }
        if(!ok) printf("0\n");
        else
        {
            int ans=0;//计数桥总数
            for(int i=0;i<m;i++)
            {
                int u=mp[e[i].u], v=mp[e[i].v];
                if(low[u]>pre[v]||low[v]>pre[u]) e[i].flag=true,ans++;
            }
            printf("%d\n",ans);
            for(int i=0;i<m;i++)if(e[i].flag)
                printf("%s %s\n",e[i].u.s,e[i].v.s);
        }
    }
    return 0;
}


好的,关于 HDU4992 所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了模 n 意义下的所有原根,我们需要先出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于最大公约数,phi 函数用于欧拉函数,pow 函数用于快速幂模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值