HDU 4738 Caocao's Bridges(重边无向图求桥)

HDU 4738 Caocao's Bridges(重边无向图求桥)

http://acm.hdu.edu.cn/showproblem.php?pid=4738

题意:

       现在有个(可重边)无向图,无向图的每条边上都有一定数目的守卫,你现在想派人去炸掉这个图的一条边,是的该图不连通。但是你只能炸1条边且如果该边守卫为x人,那么你至少要派x个人过去。所以现在问你最少需要派多少人出发?

分析:

       本题的本质还是无向图求桥,且求得是守卫数目最少的那个桥。但是本题有3个点要注意:

       1.所给的图可能不连通,且不连通的时候不需要炸,输出0.

       2.当所要去炸的桥上的守卫数=0时,我们需要派的人数是1不是0.

       3.任意两个节点u与v之间可能存在多条边。

       对于上面的1与2点,我们在原始tarjan()函数运行完后加一些判断就能解决.

       不过对于重边无向图,首先我们要用邻接表来保存图了(不能再用vector的邻接矩阵了).

       然后之前无重边的时候我们都是用过fa来标记父节点的,如果u的儿子等于fa,那么直接跳过。即如果u不通过儿子连回fa的话,low[u]==pre[u]肯定>pre[fa]。现在本题其实u是可以通过另一条(fa,u)的边连回fa的,所以这里即使u不通过儿子连回fa的话,low[u]==也可以==pre[fa]。因为fa通过边1到u,u可以通过边2到fa。

       所以本题把无向图转换成有向图来做:

       把每条无向边分为两条有向边i与i+1,如果u通过边i到达了v,那么v中必然有一条边是i^1且可以通过该i^1边到u.所以如果在v节点遍历时到达i^1边时,我们直接跳过.

       具体实现还是需要体会代码才能清晰.

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1000+10;
const int maxm=2*1000*1000+100;
int n,m;
int tot;
int head[maxn];
struct Edge
{
    int to,next,w;
}edges[maxm];
void add_edge(int u,int v,int w)
{
    edges[tot]=(Edge){v,head[u],w};
    head[u]=tot++;
    edges[tot]=(Edge){u,head[v],w};
    head[v]=tot++;
}

int pre[maxn],low[maxn];
int dfs_clock,point_num;
int ans;
void tarjan(int u,int E)
{
    low[u]=pre[u]=++dfs_clock;
    for(int e=head[u];e!=-1;e=edges[e].next)
    {
        int v=edges[e].to;
        if(e==(E^1)) continue;
        if(!pre[v])
        {
            tarjan(v,e);
            low[u]=min(low[u],low[v]);
            if(low[v]>pre[u])
                ans=min(ans,edges[e].w);
        }
        else low[u]=min(low[u],pre[v]);
    }
    point_num++;
}
int main()
{
    while(scanf("%d%d",&n,&m)==2&&n)
    {
        ans=1000000;
        dfs_clock=point_num=tot=0;
        memset(pre,0,sizeof(pre));
        memset(head,-1,sizeof(head));
        for(int i=0;i<m;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            add_edge(u,v,w);
        }
        tarjan(1,-1);
        if(point_num<n) printf("0\n");          //图不连通,不用炸
        else if(ans==1000000) printf("-1\n");   //图中无桥
        else if(ans==0) printf("%d\n",1);       //桥上兵为0
        else printf("%d\n",ans);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,关于 HDU4992 求所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了求模 n 意义下的所有原根,我们需要先求出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数求出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于求最大公约数,phi 函数用于求欧拉函数,pow 函数用于快速幂求模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,求出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值