POJ 1511 Invitation Cards(SPFA)

POJ 1511 Invitation Cards(SPFA)

http://poj.org/problem?id=1511

题意:

        有一个N个点的有向图,点的编号从1到N.现在要你求从1号点到所有其他点的最短距离S1+ 从所有其他点到1号点的最短距离S2的值.

分析:

        求其他点到1号点的最短距离直接建立原图的反向图然后求最短路径即可.

        直接利用SPFA求解.注意最终结果ans要用long long.

        注意:此题数据高达100W,所以如果用带vectorSPFA就会超时,这里只能用我们自己实现的邻接表来保存边的信息.具体看代码.

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn =1000000+10;
int n,m;

struct Edge
{
    int from,to,dist;
    Edge(){}
    Edge(int f,int t,int d):from(f),to(t),dist(d){}
};

struct BellmanFord
{
    int n,m;
    int head[maxn];     //每个节点邻接表的头
    int next[maxn];
    Edge edges[maxn];   //所有的边信息
    bool inq[maxn];
    int d[maxn];
    int p[maxn];
    int cnt[maxn];

    void init(int n)
    {
        this->n=n;
        this->m=0;
        memset(head,-1,sizeof(head));
    }

    void AddEdge(int from,int to,int dist)
    {
        edges[m]=Edge(from,to,dist);
        next[m]=head[from];
        head[from] = m++;
    }

    bool negativeCycle(int s)
    {
        queue<int> Q;
        memset(inq,0,sizeof(inq));
        memset(cnt,0,sizeof(cnt));
        for(int i=0;i<n;i++) d[i]= i==s?0:INF;
        Q.push(s);

        while(!Q.empty())
        {
            int u=Q.front(); Q.pop();
            inq[u]=false;
            for(int i=head[u];i!=-1;i=next[i])
            {
                Edge &e=edges[i];
                if(d[e.to] > d[u]+e.dist)
                {
                    d[e.to] = d[u]+e.dist;
                    p[e.to] = i;
                    if(!inq[e.to])
                    {
                        inq[e.to]=true;
                        Q.push(e.to);
                        if(++cnt[e.to]>n) return true;
                    }
                }
            }
        }
        return false;
    }
}BF1,BF2;

int main()
{
    int T; scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        BF1.init(n), BF2.init(n);

        while(m--)
        {
            int u,v,d;
            scanf("%d%d%d",&u,&v,&d);
            u--,v--;
            BF1.AddEdge(u,v,d);
            BF2.AddEdge(v,u,d);
        }
        BF1.negativeCycle(0);
        BF2.negativeCycle(0);

        long long ans=0;
        for(int i=1;i<n;i++)
            ans += BF1.d[i]+BF2.d[i];
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值