HDU 2844 Coins(多重背包)
http://acm.hdu.edu.cn/showproblem.php?pid=2844
题意:
现在有价值val[1],val[2],…val[n]的n种硬币, 它们的数量分别为num[i]个. 然后给你一个m, 问你区间[1,m]内的所有数目, 由之前n种硬币来构造(即选取某些硬币使得这些硬币的价值和等于[1,m]区间的特定数), 最多能构造出这m个数中的多少个?
分析:
基本的完全背包问题.
我们令dp[i][j]==x表示用前i种硬币且硬币总价值总价值正好等于j时, 有多少种方法.
初始化: dp为全0,且 dp[0][0]==1.
对于每种硬币, 我们有两种可能的方式处理:
1. Val[i]*num[i]>= m时, 对当前硬币做一次完全背包即可.
2. Val[i]*num[i]<m时, 我们把当前硬币分成下面k+1类:
1个 2个 4个… 2^(k-1)个, 以及 num[i]-2^k+1个
然后我们对上面k+1类物品每个都做一次01背包即可, 因为对上面k+1类新物品的01选择会覆盖我们所有可能的对原来第i类物品做的任何选择.
最终所求: 所有使得dp[n][j]!=0 的j值得和. (1<=j<=m)
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100000+5;
int n;//物品种数
int m;//总金钱数
int cost[100+5];//第i种物品的花费
int num[100+5]; //第i种物品的数量
int dp[maxn];
//1次01背包过程
void ZERO_ONE_PACK(int cost)
{
for(int i=m;i>=cost;i--)
dp[i] += dp[i-cost];
}
//1次完全背包过程
void COMPLETE_PACK(int cost)
{
for(int i=cost;i<=m;i++)
dp[i] += dp[i-cost];
}
//1次多重背包过程
void MULTIPLY_PACK(int cost,int num)
{
if(cost*num>=m)
{
COMPLETE_PACK(cost);
return ;
}
int k=1;
while(k<num)
{
ZERO_ONE_PACK(cost*k);
num -= k;
k*=2;
}
ZERO_ONE_PACK(cost*num);
}
int main()
{
while(scanf("%d%d",&n,&m)==2 && n)
{
//读取输入+初始化
for(int i=1;i<=n;i++)
scanf("%d",&cost[i]);
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
memset(dp,0,sizeof(dp));
dp[0]=1;
//递推
for(int i=1;i<=n;i++)
MULTIPLY_PACK(cost[i],num[i]);
//统计结果ans
int ans=0;
for(int i=1;i<=m;i++)if(dp[i])
ans++;
printf("%d\n",ans);
}
return 0;
}