POJ 1631 Bridging signals(LIS:最长上升子序列)
http://poj.org/problem?id=1631
题意:
(题意比较繁琐)本质就是: 给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS.
分析:
如果用O(n^2)的算法的话, 可能会超时. 所以用O(n*logn)的算法.
令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序列末尾值为x.(如果到目前为止, 根本不存在长i的上升序列, 那么x==INF无穷大)
假设当前遍历到了第j个值即a[j], 那么先找到g[n]数组的值a[j]的下确界k(即第一个>=a[j]值的g[k]的k值). 那么此时表明存在长度为k-1的最长上升子序列且该序列末尾的位置<j且该序列末尾值<a[j].
那么我们可以令g[k]=a[j] 且 dp[i]=k (dp含义如解法1).
(上面一段花时间仔细理解)
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 1e8
using namespace std;
const int maxn=40000+5;
int n;
int a[maxn];
int dp[maxn];
int g[maxn];
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
g[i]=INF;
}
int ans=0;
for(int i=1;i<=n;i++)
{
int k=lower_bound(g+1,g+n+1,a[i])-g;
dp[i]=k;
g[k]=a[i];
ans=max(ans,k);
}
printf("%d\n",ans);
}
return 0;
}