LA3523 Knights of the Round Table

建立反图后,转化为判断一个连通图中有多少个点不属于任何一个奇环

关键词:反图、双连通分量所有点至少在一个奇环中<=>该图不是二分图

证明:若该图不是二分图,则一定存在一个奇环。进一步可以证明,任何不在此奇环中的点a,一定存在两条不相交的路径分别到达此奇环上的两点u和v,这样,a,u,v三点可以通过两个奇偶性相反的环连起来,因此a一定存在于一个奇环中。因此对于非二分图的双连通分量,所有点都至少在一个奇环上。若该图是二分图,则一定不存在奇环,否则与二分图的定义矛盾。

因此,原题转化为求判断有多少个连通分量不是二分图(则双连通分量上的点至少在一个奇环上)。这里注意:割顶可以属于多个双连通分量,但是只要有一个双连通分量满足不是二分图,割顶便至少属于一个奇环。因此不能是二分图就判定该连通分量上所有的点不属于任何一个奇环。

双连通分量(bcc)的有关结论:

1.每条边恰属于一个bcc。

2.每个顶点可以属于一个或多个bcc。

3.该点是割顶<=>该点属于至少两个双连通分量

4.不同双连通分量最多有一个公共点。


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<stack>
#define maxn 1010
#define ll long long
#define INF 0x3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

int n,m,ma[maxn][maxn];
vector<int> g[maxn],bcc[maxn];
int pre[maxn],low[maxn],dfs_clock,bccno[maxn],bcc_cnt;
struct Edge{int u,v;};
stack<Edge> S;
int odd[maxn];
int color[maxn];


void build(){//建立反图(任何两个人可以相邻,则连线)
    mem(ma,0);
    for(int i=1;i<=m;i++){
        int a,b;
        scanf("%d%d",&a,&b);
        ma[a][b]=ma[b][a]=1;//1.少加ma[a][b]
    }
    for(int i=1;i<=n;i++) g[i].clear();
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            if(!ma[i][j]) { g[i].push_back(j),g[j].push_back(i); }
}

void dfs(int u,int fa){
    low[u]=pre[u]=++dfs_clock;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        Edge e=(Edge){u,v};
        if(!pre[v]){
            S.push(e); dfs(v,u);
            low[u]=min(low[u],low[v]);
            if(pre[u]<=low[v]){
                bcc_cnt++; bcc[bcc_cnt].clear();
                while(1){
                    Edge x=S.top();S.pop();
                    if(bccno[x.u]!=bcc_cnt){ bccno[x.u]=bcc_cnt;bcc[bcc_cnt].push_back(x.u); }
                    if(bccno[x.v]!=bcc_cnt){ bccno[x.v]=bcc_cnt;bcc[bcc_cnt].push_back(x.v); }
                    if(x.u==u&&x.v==v) break;
                }
            }
        }
        else if(pre[v]<pre[u]&&v!=fa) { S.push(e);low[u]=min(low[u],pre[v]); }
    }
    //根节点特判
}

void find_bcc(){
    mem(pre,0),mem(bccno,0),dfs_clock=bcc_cnt=0;
    for(int i=1;i<=n;i++) if(!pre[i]) dfs(i,-1);
}

bool bipartite(int u,int bcc_num){//判定第bcc_num个强连通分量是否是二分图
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(bccno[v]!=biao) continue;
        if(color[v]==color[u]) return false;
        if(!color[v]){//用color代替vis数组
            color[v]=3-color[u];
            if(!bipartite(v,bcc_num)) return false;
        }
    }
    return true;
}

void judge(){//判断有多少个连通分量是二分图
    mem(odd,0);
    for(int i=1;i<=bcc_cnt;i++){
        mem(color,0);
        for(int j=0;j<bcc[i].size();j++) bccno[bcc[i][j]]=i;//割顶属于多个连通分量,因此需要每次重新标记
        int u=bcc[i][0];color[u]=1;//在第i个强连通分量中任选一点开始二分图判断
        if(!bipartite(u,i)){
            for(int j=0;j<bcc[i].size();j++) odd[bcc[i][j]]=1;
        }
    }
}

int main(){
    //freopen("a.txt","r",stdin);
    while(scanf("%d%d",&n,&m)!=EOF){
        if(!n&&!m) break;
        build();
        find_bcc();
        judge();
        int ans=n;
        for(int i=1;i<=n;i++) if(odd[i]) ans--;
        printf("%d\n",ans);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值