hdu5293

题意:已知树上的若干链< u,v>,每条链有一个权值w,求链不相交的最大权值和集合。
解法:
1.以1为根建立有根树
2.寻找每点的dfs出入序
3.将链按照其端点lca的不同进行分类。dp[u]:以u为跟的子树链不相交最大权值和。sum[u]:u的子节点的dp之和。
(1).没有以u为lca的链。dp[u]=sum[u]
(2).有以u为lca的链。dp[u]=max(dp[u],sum[u]+Sum(sum[v]-dp[v])+quan[id] | v取遍该链上的所有点(不包括u本身),id为当前链的编号)
该公式仔细想一下就能得到,思想是先加后减

本题可得到一个实用的方法结论
1.动态改变树中点权,多次询问链

#pragma comment(linker,"/STACK:102400000,102400000")
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<vector>
#include<math.h>
#include<algorithm>
#define ll int
using namespace std;

const int maxn = 100000+10;
int t,n,m;
vector<int> g[maxn];

int fa[maxn][25],deep[maxn];
int cnt,l[maxn],r[maxn];
vector<int> lis[maxn];
void dfs(int u,int f,int d){
    l[u]=++cnt,deep[u]=d,fa[u][0]=f;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(v==f) continue;
        dfs(v,u,d+1);
    }
    r[u]=++cnt;
}
void init(){
    cnt=0; dfs(1,0,1);
    for(int i=1;i<=20;i++) for(int j=1;j<=n;j++) fa[j][i]=fa[fa[j][i-1]][i-1];
    for(int i=1;i<=n;i++) lis[i].clear();
}
int lca(int x, int y) {
    if (deep[x] < deep[y]) swap(x, y);
    int delta = deep[x] - deep[y];
    for(int j=0;j<=20;j++) if ((1<<j) & delta) x = fa[x][j];
    if (x == y) return x;
    for(int j=20;j>=0;j--) if (fa[x][j] != fa[y][j]) x = fa[x][j], y = fa[y][j];
    return fa[x][0];
}

int st[maxn],en[maxn],quan[maxn];
int dp[maxn],sum[maxn],sd[maxn<<1],ss[maxn<<1];
int lowbit(int x) { return x&(-x); }
void Add(int id,int x,int c[]) { for(int i=id;i<=2*n;i+=lowbit(i)) c[i]+=x; }
int Sum(int id,int c[]) { int tmp=0; for(int i=id;i>0;i-=lowbit(i)) tmp+=c[i]; return tmp; }
void dfs2(int u,int f){
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(v==f) continue;
        dfs2(v,u);
        sum[u]+=dp[v];
    }
    dp[u]=sum[u];
    for(int i=0;i<lis[u].size();i++){
        int id=lis[u][i],s=st[id],t=en[id],w=quan[id];
        int tmp=Sum(l[s],ss)+Sum(l[t],ss)-Sum(l[s],sd)-Sum(l[t],sd)+sum[u];//Sum(l[s],ss)即为s到达root的sum函数和
        //由于dfs的更新过程是从下往上的,所以在更新u节点时,u及u的祖先节点都是没有更新的,因此求和后只是s到t路径上的权值和
        dp[u]=max(dp[u],tmp+w);
    }
    Add(l[u],dp[u],sd),Add(r[u],-dp[u],sd),Add(l[u],sum[u],ss),Add(r[u],-sum[u],ss);
}

int main(){
    //freopen("a.txt","r",stdin);
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) g[i].clear();
        for(int i=1;i<n;i++) { int u,v; scanf("%d%d",&u,&v); g[u].push_back(v); g[v].push_back(u); }
        init();
        for(int i=1;i<=m;i++){
            scanf("%d%d%d",&st[i],&en[i],&quan[i]);
            int tmp=lca(st[i],en[i]); lis[tmp].push_back(i);
        }
        memset(dp,0,sizeof(dp)); memset(sum,0,sizeof(sum)); memset(sd,0,sizeof(sd)); memset(ss,0,sizeof(ss));
        dfs2(1,0);
        printf("%d\n",dp[1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值