zoj 4013 Counting Factor Trees

计算不同“因子树”的个数
分解为两种计数模型:二叉树计数+可重复排列

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<string.h>
#include<math.h>
#include<queue>
#include<map>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
using namespace std;

const ll maxm = 100000+10;
const ll maxn = 300;
ll n,num[maxn];
ll c[maxn][maxn];
vector<ll> prime;
bool not_prime[maxm];

void init(){
    for(ll i=2;i<=maxm-5;i++){
        if(!not_prime[i]) prime.push_back(i);
        for(ll j=0;j<prime.size()&&i*prime[j]<=maxn-5;j++){
            not_prime[i*prime[j]]=1;
            if(!(i%prime[j])) break;
        }
    }
    for(ll i=1;i<=100;i++){
        for(int j=0;j<=i;j++){
            if(i==j||j==0) c[i][j]=1;
            else c[i][j]=c[i-1][j]+c[i-1][j-1];
        }
    }
}

ll solve(ll n){
    ll cnt=0,sum=0,res=1;
    memset(num,0,sizeof(num));
    bool flag=false;
    for(ll i=0;prime[i]*prime[i]<=n;i++){
        if(n%prime[i]==0){
            flag=true;
            while(n%prime[i]==0) num[cnt]++,n/=prime[i];
            sum+=num[cnt++];
        }
    }
    if(!flag) return 1;
    if(n!=1) num[cnt]=1,sum++;
    res=c[2*(sum-1)][sum-1]/sum;
    for(ll i=0;i<cnt;i++){
        res*=c[sum][num[i]]; sum-=num[i];
    }
    return res;
}

int main(){
    init();
    while(scanf("%lld",&n)!=EOF){
        printf("%lld\n",solve(n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值