多元高斯分布

 

多元高斯分布

 

前言

\quad 在数据建模时,经常会用到多元高斯分布模型[1,2],下面就这个模型的公式并结合它的几何意义,来做一个简单的讲解。
 

标准高斯分布

\quad 标准高斯函数(正太分布)的标准形式有:

f ( x ) = 1 2 π e − x 2 2 f(x) = \frac{1}{\sqrt{2 \pi}} e^{ - \frac{x^2}{2}} f(x)=2π 1e2x2

\quad 这个函数描述了变量 x x x的一种分布特性,即为标准正态分布 x ∼ N ( 0 , 1 ) x\sim N(0,1) xN(0,1),变量 x x x的分布有如下特点:

  1. 均值为 0
  2. 方差为 1
  3. 概率密度和为 1

\quad 其中,标准高斯分布的概率密度和为 1 可以从定积分的角度来看,或者说由于要求其为 1,才有如此形式的标准高斯分布,详细可以参看 高斯分布概率密度的二重积分 [link]
 

一元高斯函数

\quad 一元高斯函数一般形式为:

f ( x ) = 1 2 π δ e − ( x − μ ) 2 2 δ 2 f(x) = \frac{1}{\sqrt{2 \pi}\delta} e^{ - \frac{(x-\mu)^2}{2\delta^2}} f(x)=2π δ1e2δ2(xμ)2

\quad 该形式中, μ \mu μ 为均值, δ \delta δ 为标准差。其中 1 2 π δ \frac{1}{\sqrt{2\pi}\delta} 2π δ1中的 δ \delta δ 是为了使得概率密度函数和为 1, 可以从积分[link] 的角度分析。此外,也可以参考[2]得到一个形象的解释,这里做一个简短的说明:
\quad 我们令 z = x − μ δ z=\frac{x-\mu}{\delta} z=δxμ z ∼ N ( 0 , 1 ) z\sim N(0,1) zN(0,1),那么从从 z − > x z -> x z>x 过程为:

  1. x x x 向右移动 μ \mu μ 个单位
  2. 将密度函数伸展 δ \delta δ

\quad 所以,当密度函数在 x x x 方向伸展了 δ \delta δ 倍,为了保证最后概率密度和仍然为 1,那么密度函数需要在 y y y 方向缩小 δ \delta δ 倍(乘以 1 δ \frac{1}{\delta} δ1)。

 

独立多元正态分布

待续

如果这个内容对于您的研究工作有帮助,也希望引用我们的论文:[1].

 
参考:


1. Chen K X, Ren J Y, Wu X J, et al. Covariance Descriptors on a Gaussian Manifold and their Application to Image Set Classification[J]. Pattern Recognition, 2020: 107463. [link]
2. https://www.cnblogs.com/bingjianing/p/9117330.html [link]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值