矩阵的迹满足交换性:tr(AB)=tr(BA)

对于任意两个矩阵 A ∈ R m × n , B ∈ R n × m A \in R^{m \times n},B \in R^{n \times m} ARm×n,BRn×m,我们有 t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)

 
证明 :
 
t r ( A B ) = ∑ i = 1 m [ A B ] i i = ∑ i = 1 m ∑ j = 1 n a i j b j i = ∑ j = 1 n ∑ i = 1 m b j i a i j = ∑ j = 1 n [ B A ] j j = t r ( B A ) tr(AB) = \sum_{i=1}^{m}[AB]_{ii}= \sum_{i=1}^{m} \sum_{j=1}^{n}a_{ij}b_{ji}= \sum_{j=1}^{n} \sum_{i=1}^{m}b_{ji}a_{ij}= \sum_{j=1}^{n}[BA]_{jj}=tr(BA) tr(AB)=i=1m[AB]ii=i=1mj=1naijbji=j=1ni=1mbjiaij=j=1n[BA]jj=tr(BA)
 
 

参考:


  1. https://blog.csdn.net/silence1214/article/details/8632357/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值