AWS Data Lake 和 Amazon S3 与 SQL Server 的集成提供了以任何规模存储数据并利用高级分析功能的能力。本综合指南将引导您完成设置此集成的过程,并使用研究论文数据集作为实际示例。
什么是数据湖?
数据湖充当集中式存储库,用于存储结构化和非结构化数据,无论其大小如何。它使用户能够执行广泛的分析,包括可视化、大数据处理、实时分析和机器学习。
Amazon S3:AWS Data Lake 的基础
Amazon Simple Storage Service (S3) 是一种对象存储服务,可提供可扩展性、数据可用性、安全性和高性能。它为存储原始数据和已处理数据提供了坚实的基础,在数据湖架构中发挥着关键作用。
为什么要将 AWS Data Lake 和 S3 与 SQL Server 集成?
通过有效管理大量数据来实现可扩展性。
与传统存储方法相比,以更低的速率存储数据,从而节省成本。
利用高级分析功能对海量数据集进行复杂的查询和分析。
无缝集成来自不同来源的数据,以获得全面的见解。
分步指南
1. 设置 AWS Data Lake 和 S3
步骤 1:创建 S3 存储桶
登录 AWS 管理控制台。
导航到 S3,然后单击“创建存储桶”。
为存储桶命名:使用唯一名称,例如 .
researchpaperdatalake