Comet OJ - Contest #11 F arewell(FWT + 状态压缩)

大致题意

在这里插入图片描述
在这里插入图片描述

做法

考虑到n的大小只有20,所以应该和状态压缩或者说集合按位表示有关。

因此,我们考虑用 F S F_S FS表示考虑的点的状态为 S S S的情况下,所有可能的 D A G DAG DAG的方案数。

考虑每一个状态的转移,容斥一下可以得到如下转移方程:
F S = ∑ T ⊂ S ( − 1 ) ∣ S − T ∣ F T 2 ∣ E T , S − T ∣ F_S=\sum_{T \subset S}(-1)^{|S-T|}F_T2^{|E_{T,S-T}|} FS=TS(1)STFT2ET,ST
其中 E S , T E_{S,T} ES,T表示 S S S T T T之间的边。

考虑到 E T , S − T = E S − E T − E S − T E_{T,S-T}=E_S-E_T-E_{S-T} ET,ST=ESETEST,我们在等式两边同时除以 E S E_S ES,可以有:
F S 2 ∣ E S ∣ = ∑ T ⊂ S ( − 1 ) ∣ S − T ∣ 1 2 ∣ E S − T ∣ ∗ F T 2 ∣ E T ∣ \frac{F_S}{2^{|E_S|}}=\sum_{T \subset S}(-1)^{|S-T|}\frac{1}{2^{|E_{S-T}|}}*\frac{F_T}{2^{|E_T|}} 2ESFS=TS(1)ST2EST12ETFT
很开心的发现,这已经变成了一个子集卷积的形式,于是我们就可以用FMT或者FWT去快速计算了。

具体来说,考虑用二进制的形式表示集合,我们令 g [ i ] [ m a s k i ] = ( − 1 ) i 2 − t g[i][mask_i]=(-1)^{i}2^{-t} g[i][maski]=(1)i2t f [ i ] [ m a s k i ] = F m a s k i ∗ 2 − t f[i][mask_i]=F_{mask_i}*2^{-t} f[i][maski]=Fmaski2t,其中 t t t表示 m a s k i mask_i maski内部的连边条数。总的转移方程可以写成:
f [ i ] [ m a s k i ] = ∑ j = 1 , m a s k j ⊂ m a s k i i f [ j ] [ m a s k j ] ∗ g [ i − j ] [ m a s k i ⊕ m a s k j ] f[i][mask_i]=\sum_{j=1,mask_j\subset mask_i}^{i}f[j][mask_j]*g[i-j][mask_i\oplus mask_j] f[i][maski]=j=1,maskjmaskiif[j][maskj]g[ij][maskimaskj]
直接FWT即可,时间复杂度 O ( n 2 2 n ) O(n^22^n) O(n22n)

代码

#include<bits/stdc++.h>
#define fi first
#define se second
#define LL long long
#define pb push_back
#define INF 0x3f3f3f3f
#define sc(x) scanf("%d",&x)
#define scc(x,y) scanf("%d%d",&x,&y)
#define sccc(x,y,z) scanf("%d%d%d",&x,&y,&z)

using namespace std;

const int N=25;
const int M=1048580;
const int mod=998244353;
const int inv2 = (mod + 1) / 2;

int n,m,cnt[M],tot[M],bin[N*N],inv[N*N],f[N][M],g[N][M],ma[N];

int lg(int x) {return std::lower_bound(bin,bin+n,x)-bin;}

int qpow(int x,int y)
{
	int ans=1;
	while (y)
	{
		if (y&1) ans=(LL)ans*x%mod;
		x=(LL)x*x%mod;y>>=1;
	}
	return ans;
}

void FWT_xor(int *a,int opt)
{
    for(int i=1;i<bin[n];i<<=1)
        for(int p=i<<1,j=0;j<bin[n];j+=p)
            for(int k=0;k<i;++k)
            {
                int X=a[j+k],Y=a[i+j+k];
                a[j+k]=(X+Y)%mod;a[i+j+k]=(X+mod-Y)%mod;
                if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%mod,a[i+j+k]=1ll*a[i+j+k]*inv2%mod;
            }
}


int main()
{
	scc(n,m);
	bin[0]=inv[0]=1;
	for (int i=1;i<=max(n,m);i++) bin[i]=bin[i-1]*2%mod,inv[i]=qpow(bin[i],mod-2);
	for (int i=1;i<=m;i++)
	{
		int x,y;scc(x,y);
		ma[x]|=bin[y-1];ma[y]|=bin[x-1];
	}
	for (int i=1;i<bin[n];i++) cnt[i]=cnt[i-(i&(-i))]+1,tot[i]=tot[i-(i&(-i))]+cnt[ma[lg(i&(-i))+1]&i];
	for (int i=0;i<bin[n];i++) g[cnt[i]][i]=(cnt[i]&1)?inv[tot[i]]:mod-inv[tot[i]];
	for (int i=0;i<=n;i++) FWT_xor(g[i],1);
	f[0][0]=1;
	FWT_xor(f[0],1);
	for (int i=0;i<=n;i++)
	{
		for (int j=1;j<=n-i;j++)
			for (int k=0;k<bin[n];k++)
				(f[i+j][k]+=(LL)f[i][k]*g[j][k]%mod)%=mod;
	}
	FWT_xor(f[n],-1);
	printf("%d\n",(LL)f[n][bin[n]-1]*qpow(2*qpow(3,mod-2),m)%mod);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值