**引言:**这篇博客用于记录时频分析的一点心得。
这篇文章是对Nature computational Science的学习与翻译。
论文阅读- The fast continuous wavelet transformation fCWT for real-time, high-quality, noise-resistance
1. 摘要
The spectral analysis of signals is currently either dominated by the speed–accuracy trade-off or ignores a signal’s often nonstationary character.
翻译: 信号的频谱分析是目前由计算速度-准确率的权衡法则主宰或忽略了信号的非平稳特征。
完善版本: 信号的频谱分析通常是由计算效率、内存消耗与准确率的权衡或者部分忽略了信号的非平稳特性。
Here we introduce an open-source algorithm to calculate the fast continuous wavelet transform (fCWT). 这里引入了一个开源算法实现快速小波变换。
The parallel environment of fCWT separates scale-independent and scale-dependent operations, while utilizing optimized fast Fourier transforms that exploit downsampled wavelets.
翻译: