推土机距离(Wasserstein distance)以及其他几种常用的分布差异度量方法(mark)

本文详细介绍了Wasserstein距离,包括其概念、优势、应用场景和Python实现。Wasserstein距离在分布差异度量中表现出色,即使分布支撑集不重叠也能有效比较。相比之下,KL散度和JS散度在某些情况下可能无意义或不具对称性。文章还讨论了KL散度和JS散度的基本原理及其在GAN网络等领域的应用,并给出了Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



1. Wasserstein距离

1.1 方法简介
Wasserstein Distance也称为推土机距离(Earth Mover’s distance, EMD),Wasserstein Distance的定义是评估由P分布转换成Q分布所需要的最小代价(移动的平均距离的最小值)→和挖东墙补西墙类似(把一个形状转换成另一个形状所需要做的最小工),类似于把一块地方土挖出来,然后填平另一块地方,而W距离找的的是这一过程中挖每一方土最小需要消耗的能量,所以经常查到Wasserstein Distance称为推土机距离。

推土机哪家强?

1.2 方法优势
虽然KL散度和JS散度应用更为广泛,Wessertein距离相比KL散度和JS散度的优势在于:即使两个分布的支撑集没有重叠或者重叠非常少,仍然能反映两个分布的远近。而JS散度在此情况下是常量,KL散度可能无意义。
K-L 散度和 JS 散度取值是突变的,要么最大要么最小,Wasserstein 距离却是平滑的。如果我们要用梯度下降法优化参数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robo-网络矿产提炼工

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值