引言:
这篇文章是北科大-冯志鹏老师的早期研究工作,工作主要是面向轴承的故障诊断问题,创新性的提出了一种基于EEMD的方法用于微弱故障信号特征提取。
Ensemble Empirical Mode Decomposition-Based Teager Energy Spectrum for Bearing Fault Diagnostics
1. 摘要
振动信号中的周期性脉冲及其重复频率是诊断滚动轴承局部损伤的关键指标。提出了一种基于集成经验模态分解(EEMD)和Teager能量算子的轴承故障特征频率提取方法。首先利用Teager能量算子对信号进行EEMD分解,以满足单分量要求。然后,根据本征模态函数与原始信号的相关性及其峰度来选择感兴趣的本征模态函数(IMF)。接下来,将Teager能量算子应用于选定的IMF,以检测故障诱发的脉冲。最后,将傅立叶变换应用于获得的Teager能量序列,以识别故障引起的周期性脉冲的重复频率,从而诊断轴承故障。通过对模拟轴承振动信号的分析,说明了该方法的原理。通过种子故障试验和故障运行试验的实验信号分析,验证了该方法在提取轴承故障特征频率方面的有效性,尤其是在**识别弱故障和复合故障症状方面的性能。**比较研究表明,该方法比传统的谱分析方法和平方包络谱分析方法具有更好的性能,或者说是对传统谱分析方法的补充。
2. 方法建模分析部分
2.1 动力学方程部分
这部分算是一点题外话