Numpy.random.normal(loc=0.0,scale=1.0,size=None)
高斯分布函数
loc:该概率分布的均值,对应着整个分布的中心(center)
scale:该概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高
size:输出的shape,默认为None,只输出一个值
tf.random_uniform(shape.minval=0,maxval=None,dtype=tf.float32,seed=Node,name=None)
从均匀分布中输出随机值,生成的值在[minval,maxval]范围内均匀分布。
shape:一维整数张量或python数组,输出张量的形状
minval:范围的下限,默认为0
maxval:范围的上线,默认为1
dtype:输出类型:float16,float32,float64,int32,orint64
seed:一个python整数,为分布创建一个随机种子
name:操作的名称
tf.square:计算方差
tf.reduce_mean:求平均值
tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)
用于从服从正太分布的数值中取出指定个数的值。
shape:输出张量的形状
mean:正态分布的均值
stddev:正态分布的标准差
dtype:输出的类型
seed:随机数种子
name:操作的名称
tf.argmax(input,axis=None,name=None,dimension=None) 对输入的矩阵按照行或列计算最大值
input:输入的矩阵
axis:0表示列,1表示行
返回值:行或列的最大值下标向量
tf.cast(x,dtype,name=None)
将x的数据格式转化成dtype数据类型,如原来x的数据格式是bool,转化成float后,就能将其转化成0,1序列。
tf.reset_default_graph()函数:
用于清除默认图像堆栈并重置全局默认图形,默认图形是当前线程的一个属性。该函数只适用于当前线程。当一个td.Session或者tf.InteractiveSession激活时调用这个函数会导致未定义的行为。调用此函数后使用任何以前创建的tf.Operation或tf.Tendor对象将导致未定义的行为。
tf.mm.conv2d(input.filter,strides,padding,use_cunn_on_gpu=None,name=None)函数:
实现卷积的函数,搭建卷积神经网络的核心方法
input:输入的图像
filter:相当于CNN中的卷积核
strides:卷积时在图像的每一维的步长,[1,strides,strides,1].
padding:设置卷积方式
use_cudnn_on_gpu:bool类型,是否使用cudnn加速器,默认为true
返回值:feature map,shape为[batch,h,w,channels]
tf.nn.max_pool(value,ksize,strides,padding,name=None)函数:
CNN中最大池化操作
value:池化的输入,通常为feater map,
ksize:池化窗口大小,一般为[1,h,w,1]
strides:窗口在图像上的每一维的步长,[1,strides,strides,1]
padding:设置池化方式
tf.reshape(tensor,shape,name=None)函数:
将tensor变化为shape的形式,shape为一个列表形式。
tf.nn.dropout(x,keep_prob)函数:
防止过拟合,会随机扔掉一部分神经元。