tensorflow常见函数

本文深入解析了TensorFlow中的关键函数,包括高斯分布、均匀分布、卷积、池化、dropout等,以及如何利用这些函数进行深度学习模型的构建。通过具体的函数解释和应用场景,帮助读者理解深度学习的基本概念和技术。
摘要由CSDN通过智能技术生成

Numpy.random.normal(loc=0.0,scale=1.0,size=None)

高斯分布函数

loc:该概率分布的均值,对应着整个分布的中心(center)

scale:该概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高

size:输出的shape,默认为None,只输出一个值

tf.random_uniform(shape.minval=0,maxval=None,dtype=tf.float32,seed=Node,name=None)

从均匀分布中输出随机值,生成的值在[minval,maxval]范围内均匀分布。

shape:一维整数张量或python数组,输出张量的形状

minval:范围的下限,默认为0

maxval:范围的上线,默认为1

dtype:输出类型:float16,float32,float64,int32,orint64

seed:一个python整数,为分布创建一个随机种子

name:操作的名称

tf.square:计算方差

tf.reduce_mean:求平均值

tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)

用于从服从正太分布的数值中取出指定个数的值。

shape:输出张量的形状

mean:正态分布的均值

stddev:正态分布的标准差

dtype:输出的类型

seed:随机数种子

name:操作的名称

 tf.argmax(input,axis=None,name=None,dimension=None) 对输入的矩阵按照行或列计算最大值

input:输入的矩阵

axis:0表示列,1表示行

返回值:行或列的最大值下标向量

tf.cast(x,dtype,name=None)

将x的数据格式转化成dtype数据类型,如原来x的数据格式是bool,转化成float后,就能将其转化成0,1序列。

tf.reset_default_graph()函数:

用于清除默认图像堆栈并重置全局默认图形,默认图形是当前线程的一个属性。该函数只适用于当前线程。当一个td.Session或者tf.InteractiveSession激活时调用这个函数会导致未定义的行为。调用此函数后使用任何以前创建的tf.Operation或tf.Tendor对象将导致未定义的行为。

tf.mm.conv2d(input.filter,strides,padding,use_cunn_on_gpu=None,name=None)函数:

实现卷积的函数,搭建卷积神经网络的核心方法

input:输入的图像

filter:相当于CNN中的卷积核

strides:卷积时在图像的每一维的步长,[1,strides,strides,1].

padding:设置卷积方式

use_cudnn_on_gpu:bool类型,是否使用cudnn加速器,默认为true

返回值:feature map,shape为[batch,h,w,channels]

tf.nn.max_pool(value,ksize,strides,padding,name=None)函数:

CNN中最大池化操作

value:池化的输入,通常为feater map,

ksize:池化窗口大小,一般为[1,h,w,1]

strides:窗口在图像上的每一维的步长,[1,strides,strides,1]

padding:设置池化方式

tf.reshape(tensor,shape,name=None)函数:

将tensor变化为shape的形式,shape为一个列表形式。

tf.nn.dropout(x,keep_prob)函数:

防止过拟合,会随机扔掉一部分神经元。


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值